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Abstract

An increasing number of parameter estimation tasks involve the use of at least two informa-
tion sources, one complete but limited, the other abundant but incomplete. Standard algorithms
such as EM (or em) used in this context are unfortunately not stable in the sense that they can
lead to a dramatic loss of accuracy with the inclusion of incomplete observations. We provide
a more controlled solution to this problem through differential equations that govern the evo-
lution of locally optimal solutions (fixed points) as a function of the source weighting. This
approach permits us to explicitly identify any critical (bifurcation) points leading to choices
unsupported by the available complete data. The approach readily applies to any graphical
model in O(n3) time where n is the number of parameters. We use the naive Bayes model to
illustrate these ideas and demonstrate the effectiveness of our approach in the context of text
classification problems.
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1 Introduction

Many modern application areas such as text classification involve estimating generative probabil-
ity models under incomplete or partial information. The incomplete nature of the available data
can be often thought of as arising from two data sources, one complete but limited and the other
abundant but incomplete. The estimation problem is consequently cast as one with two (or more)
heterogeneous data sources. Estimating generative models is not the only way of exploiting such
data sources, especially in the context classification problems with labeled and unlabeled exam-
ples. While transductive algorithms have been demonstrated as viable (or sometimes even superior)
alternatives in classification contexts, we focus here only on likelihood based estimation of gener-
ative models but envision a useful application of (some of) the ideas described in this paper also to
transductive methods.

We identify two related but fundamental estimation issues: 1) how to allocate or balance the
two sources of information to maximize the accuracy of the resulting model and 2) how to ensure
that the estimation algorithm itself remains stable (e.g., small changes in the source allocation re-
sults in small changes in the accuracy of the solution). Neither question is adequately answered by
the usual application of the EM (or em) algorithm. Indeed, the two algorithms are not stable, nor
do they provide any help in determining the appropriate balance of the sources. Indeed, incorpo-
rating more incomplete data for use with the EM (or em) algorithm can result in a dramatic loss of
accuracy.

The main contribution of this paper is to provide a stable alternative to the EM and em al-
gorithms. The idea is to evolve differential equations that govern the fixed points of the two al-
gorithms, where the source allocation parameter takes the role of time in the evolution process.
The differential equations are initialized with the solution obtained from the complete data source
alone. The significant feature of this approach is that it provides an explicit way of identifying
critical points that arise in these estimation problems. In case where the incomplete data sources is
overwhelmingly more abundant, our approach yields a close approximation to the optimal alloca-
tion parameter and an interval estimate for other cases.

The paper is organized as follows. We begin by describing two estimation criteria leading to the
EM and em algorithms and provide an analysis of the two algorithms in the case of a naive Bayes
model and predominantly incomplete data. We then describe our alternative approach based on
evolving differential equations. We corroborate the method with experiments in text classification
problems.

2 Estimation criteria for incomplete data

Assume two sets of data, one complete (xi, yi)1≤i≤n, and the other incomplete (x′
j)1≤j≤m, where

n � m so that we have many more incomplete than complete observations. Both sets of data
are assumed to have been generated i.i.d. from the same unknown generative distribution P ∗(x, y)
over the joint space X × Y . Our goal here is to combine the two types of data sources so as to
find the distribution Q from a chosen model familyM that best matches P ∗(x, y) in the following
KL-divergence sense:

Q∗ = arg min
Q∈M

D(P ∗
x,y ‖Qx,y)
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If we replace P ∗ with P̂ l(x, y), the empirical distribution from the complete data, we obtain the
standard maximum likelihood estimate for Q.

To incorporate any information from the incomplete dataset, we must both restrict the model
family M as well as modify the estimation criterion. Imposing constraints between Q(x) and
Q(y|x) is necessary to be able to update Q(y|x) on the basis of the incomplete observations [2]
[7]. We consider two related estimation criteria. First, we can try to maximize the likelihood of all
the observed data or, more generally, minimize

(1− λ)D(P̂ l
x,y ‖Qx,y) + λD(P̂ u

x ‖Qx) (1)

where P̂ l(x, y) and P̂ u(x) are the empirical distributions from the two data sources. Note that
by setting the source allocation parameter λ equal to m/(n + m), we recover the basic likelihood
criterion augmented with unlabeled data. The allocation parameter is introduced here to emphasize
the fact that the observed frequencies of the examples need not yield the best combination of the
sources. The parameter λ will indeed play a crucial role later in the paper.

Another related criterion is obtained from a geometric perspective. Define Pλ as the set of
distributions obtained by completing the incomplete data with any conditional T (y|x):

Pλ =
{

P : P (x, y) = (1− λ)P̂ l(x, y) + λP̂ u(x)T (y|x) for some T (y|x)
}

The estimate Q is now found by minimizing the KL-divergence to the set Pλ or

D(Pλ ‖Qx,y) ≡ min
P∈Pλ

D(Px,y ‖Qx,y) (2)

The first criterion leads to a weighted version of the EM-algorithm and the latter one to the
em-algorithm [1]. The two algorithms are often identical but not here.

2.1 Identifiability

The limiting case of infinite unlabeled data with λ = 1 deserves further consideration. It tells us
how much information can be obtained about Q(y|x) knowing only Q(x). The answer is inherently
a characteristic ofM as well as the initial choice for Q. For example, in a classification context
where y denotes the label, a typical model familyM has at least |Y|! (permutation of the labels)
distinct distributions corresponding to any common achievable marginal Q(x).

A desirable property of the model family in estimation with incomplete data is identifiability.
We call the family identifiable with incomplete data if there are exactly |Y|! distributions inM for
a given achievable marginal Q(x). If a model family is identifiable with incomplete data, model
parameters can be estimated on the basis of unlabeled data alone except for the class permutation,
which can be readily inferred from a few complete samples.

The relation of this notion of identifiability to common model families is not yet fully under-
stood. Mixtures of Gaussians are identifiable [6] in this sense, as well as discrete naive Bayes
models with binary latent variable and at least three binary features [5], while those with only two
features are not. Naive Bayes models with more than two classes and enough features can also be
identifiable, though the exact number of features required remains unclear.

We do not assume identifiability with incomplete data in the remainder of the paper but merely
emphasize here that this property plays an important role in providing a priori guarantees of suc-
cess. Instead, we focus on finding alternative means of stabilizing the estimation process.
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Figure 1: Left: accuracy of the EM (solid) and em (dotted) solutions as a function of λ on 20
complete and 2000 incomplete samples from a known binary naive Bayes model with four features.
Right: critical λ detected at discontinuity.

3 The EM and em algorithms

Incomplete-data criteria such as (1) and (2) are typically optimized with iterative procedures like
EM [4] and Amari’s em [1], respectively. The two algorithms differ only in terms of how they
complete incomplete observations in the E/e-steps owing to the different estimation criteria. The
M/m-steps of the algorithms employ the same information divergence projection to derive the
parameters of the next iterate: find Q ∈ M that minimizes D(P ′

x,y ‖Qx,y), where P ′
x,y embodies

the data completion (E/e-step).
We illustrate the two algorithms here on a discrete naive Bayes model family, where the data

variable x consists of k features (x1, x2, . . . , xk) independent given the class label y:

Q(x, y) =

[

k
∏

i=1

Qi(xi|y)

]

Q(y) =

[

k
∏

i=1

Qi(xi, y)

]

Q(y)1−k (3)

For the naive Bayes model family both algorithms have the following form:

E-step: P (x, y)← (1− λ)P̂ l(x, y) + λP̂ u(x)T (y|x)
M-step: Qi(xi, y)←

∑

x\xi
P (x, y)

(4)

where T (y|x) = Q(y|x) in EM, while in em T (y|x) = 0 for y ∈ I and

T (y|x) =

(

1 +
1− λ

λ

P̂ l(x)

P̂ u(x)

)

Q(y|x)
∑

y′ 6∈I Q(y′|x)
−

1− λ

λ

P̂ l(x, y)

P̂ u(x)
(5)

for y 6∈ I , where I is minimal such that all T (y|x)’s are in [0, 1].
Both algorithms find locally optimal solutions of their respective criterion. These solutions are

characterized as self-consistent fixed points of the projections. These fixed points are unlikely to
correspond to the globally optimal solutions (which can also be degenerate).

When λ approaches 1, the regime where the two estimation criteria are starting to agree, both
algorithms may converge to fixed points that are significantly different from the privileged one that
remains closest to the complete data (ML) solution. Grounding the solution to the complete data
case is desirable since otherwise we have little reason to expect that the resulting model would
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Figure 2: em as an alternating minimization of KL-divergence between the observed familyD and
the model familyM. Due to the non-convexity ofM as D moves with λ, uncontrolled jumps in
convergence are possible.

serve well as a classifier. Figure 1 illustrates this point. We ran a simulated experiment on a
known binary naive Bayes model with four features, and plotted the KL-divergence between the
true conditional P (y|x) and those coming from the fixed points of the EM and em-algorithms as a
function of the source allocation parameter λ. The accuracy of the resulting models diverge rapidly
as λ approaches 1.

The geometric interpretation of em as an alternating minimization of divergences in the spirit
of Csiszár [3] reveals the problem. em performs e and m projections between the observed data
manifoldDλ = (1−λ)P̂ l +λT−1(P̂ u) and the model familyM, where T is the y-marginalization
mapping between distributions on (x, y) and x. Because D is convex, ifM were convex, the it-
eration would be well-behaved and guaranteed to converge to the global minimum [3]. However,
M is rarely convex (surely not for naive Bayes), and the convergence behavior is sometimes char-
acterized by large jumps from a local convex region ofM to another when the data manifold Dλ

changes as a function of λ (Figure 2). A similar continuity argument applies to EM but due to
the weighted allocation of sources, its geometry is governed by a different set of unnormalized
measures 1.

4 Controlled selection of fixed points

In what follows we treat the iteration of the optimization algorithm (be it EM, em, or other al-
gorithm) as an operator EMλ acting on M. The algorithm computes for each λ a fixed point
Qλ = EMλ(Qλ) of the operator. Ideally we want to control stability and predictability by selecting
fixed points that are firmly grounded in the complete data estimate, represented by Q0. In order to
establish the connection between Qλ and Q0, we view the intermediate Qλ’s as tracing a contin-
uous curve of fixed points parameterized by λ. Discontinuities may occur, however, and we treat
those Qλ’s that cannot be continuously traced back to Q0 as inappropriate (not grounded).

1Alternating minimization between {[(1 − λ)P̂ l(x, y) λP̂ u(x)T (y|x)] | for some T (y|x)} and {[(1 −
λ)Q(x, y) λQ(x, y)] | Q ∈ M} where the brackets combine the elements in the product space of unnormalized
measures.
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We can characterize the continuous curve Qλ by setting up the differential equation that governs
the evolution of fixed points with λ:

d

dλ
Qλ = (I −∇QEMλ(Qλ))

−1 ∂

∂λ
EMλ(Qλ) (6)

Any initial fixed point can be traced to a unique continuous path until the (transformed) Jaco-
bian I −∇QEMλ(Qλ) becomes singular. Such critical λ’s may reflect a discontinuity or a bifur-
cation into separate paths of fixed points. While such paths could be traced on the basis of the
eigenvector corresponding to the zero eigenvalue, the choice of the paths would not be supported
by the complete data.

For the purpose of solving the equations, the initial condition is the unique fixed point Q0 = P̂ l,
the complete-data estimate 2. We find a continuous path of fixed points connected to Q0 by evolving
the differential equation until we reach the first critical λ. The resulting bifurcation points could be
traced further as explained above but discontinuities may be followed only by exploring with EM.
However, we do not proceed beyond the critical λ as we believe we no longer have any guarantees
about the ensuing estimates. Choosing λ close to the first critical point means that we exploit the
unlabeled examples (or more generally incomplete data) to their fullest potential.

4.1 Relationship to fixed points of plain EM

It is worth asking whether the differential equation (call it DIFFEM) also finds different fixed
points than the EM-like algorithms initialized with the complete data solution P̂ l. Since λ = 0 is
never critical (cf. eigenvalues of the modified Jacobian start at 1) and EMλ is continuous in λ, the
λ = 0 neighborhood of EMλ has a unique fixed point. However, as λ increases, parallel fixed-point
paths may emerge, even if DIFFEM does not signal a critical λ. Empirically we found that EM
converges to the DIFFEM solution for a while, but it can jump to a different fixed-point path even
at non-critical λ. From the point of view of estimation with incomplete data these are jumps that
we want to avoid. Therefore, DIFFEM not only extends P̂ l continuously as much as is reasonable,
it also protects against unjustified discontinuities introduced by EM.

4.2 Differential equation for naive Bayes

To illustrate, we detail the differential equation applied to EM and discrete naive Bayes (3). We
over-parameterize the model to simplify computation by the vector (Q(y) Q(x1, y) . . . Q(xk, y)).
EMλ now acts on an unconstrained vector of |Y|(1 +

∑k
i=1
|Xk|) components, but its fixed points

are still valid distributions. Under this parameterization the EMλ operator is:

Qi(y)← (1− λ)P̂ l(y) + λ
∑

x P̂ u(x)Q(y|x)

Qi(xi, y)← (1− λ)P̂ l(xi, y) + λ
∑

x\xi
P̂ u(x)Q(y|x)

(7)

Thus to compute∇QEMλ we only need to differentiate Q(y|x) obtained from (3) with respect
to all components of the parameter vector:

2In practice we smooth P̂ l as EMλ is undefined on zero probabilities.
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dQ(y′)

dQ(y|x)
= (k − 1)

[

Q(y|x)Q(x|y′)

Q(x)
− (y = y′)

Q(x|y′)

Q(x)

]

(8)

dQi(xi, y
′)

dQ(y|x)
= −

Q(y|x)Q(x \ xi|y
′)

Q(x)
+ (y = y′)

Q(x \ xi|y
′)

Q(x)
(9)

if the i’th component of x is xi, 0 otherwise. Finally from (7) we get ∂
∂λ

EMλ = EM1 −Q0.
Regarding computational complexity, the dominant operation is the matrix inversion which is

cubic in the number of parameters in the model. In addition, summations in (7) can be carried out
linearly in the number of unlabeled samples.

5 Experiments

We illustrate how performance becomes unpredictable beyond the critical source allocation param-
eter by running experiments on a document classification task from the 20-newsgroups dataset. We
have modeled each document by naive Bayes with binary features that indicate the presence or ab-
sence of words 3. To save computational time we performed feature selection by mutual informa-
tion and reduced the number of features to the most 25 to 40 significant words, and also restricted
the number of classes to 3 up to 5. To train the model we have used 10 to 100 labeled, and 1000 to
5000 unlabeled samples. The differential equation was solved by a Runge-Kutta method on 1000
interval subdivisions. Only for the purpose of comparison with EM, we have followed the differen-
tial equation even beyond critical λ by running a few EM iterations to stabilize to a new continuous
path of fixed points. However, there is more than one direction to pass the discontinuity, and our
choice is not necessarily the best (if “best” can be defined at all after critical λ).

You can see in Figure 3 how classification accuracy evolves smoothly before the critical point,
while there is a big drop in performance at λ critical. Beyond that λ there is no reason to associate
fixed points with complete-data evidence. Note that DIFFEM does not suggest an optimal λ, which
might be less than critical, but only imposes an upper bound after which performance is most likely
to drop significantly. We found that even without having a procedure for selecting optimal λ other
than setting it to the critical value, DIFFEM achieved better performance than EM most of the
time, revealing serious predictability issues with EM.

6 Discussion

We have introduced here a stable alternative to the standard EM (or em) algorithm for estimation
with incomplete data. The approach is based on evolving differential equations of fixed points
starting with the solution obtained from few available complete observations. The advantage of
our approach is that we can explicitly identify any critical points that lead to solutions unsupported
by the available complete data. The differential equations can be readily formulated for any in-
complete data estimation problem involving graphical models but with a cost of O(n3), where n
is the number of parameters. More efficient approximate methods or methods better exploiting the
structure of the problem will need to be developed. Another limitation of our approach is that we

3The differential equation can also treat multinomial naive Bayes models as in [7]
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Figure 3: Eight runs of DIFFEM versus EM. For each run the upper graph is the minimum eigen-
value of the transformed Jacobian, and the lower graph the classification accuracy of DIFFEM and
EM as a function of λ. Most of the time the dotted-line EM coincides with DIFFEM.
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cannot yet clearly identify the optimal value for the source allocation parameter λ except for an
upper bound. However, in the case of relatively abundant source of incomplete data, a value close
to the first critical point is appropriate so as to derive a maximal (controlled) use of the available
data.
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