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Abstract

We develop and analyze game-theoretic algorithms for predicting coordinate bind-
ing of multiple DNA binding regulators. The allocation of proteins to local neigh-
borhoods and to sites is carried out with resource constraints while explicating
competing and coordinate binding relations among proteins with affinity to the
site or region. The focus of this paper is on mathematical foundations of the ap-
proach. We also briefly demonstrate the approach in the context of theλ-phage
switch.

1 Introduction

Transcriptional control relies in part on coordinate operation of DNA binding regulators and their
interactions with various co-factors. We believe game theory and economic models provide an
appropriate modeling framework for understanding interacting regulatory processes. In particular,
the problem of understanding coordinate binding of regulatory proteins has many game theoretic
properties. Resource constraints, for example, are critical to understanding who binds where. At low
nuclear concentrations, regulatory proteins may occupy only high affinity sites, while filling weaker
sites with increasing concentration. Overlapping or close binding sites create explicit competition
for the sites, the resolution of which is guided by the available concentrations around the binding
sites. Similarly, explicit coordination such as formation of larger protein complexes may be required
for binding or, alternatively, binding may be facilitated by the presence of another protein. The key
advantage of games as models of binding is that they can provide causally meaningful predictions
(binding arrangements) in response to various experimental perturbations or disruptions.

Our approach deviates from an already substantial body of computational methods used for resolving
transcriptional regulation (see, e.g., [4, 10]). From a biological perspective our work is closest in
spirit to more detailed reaction equation models [6, 1], while narrower in scope. The mathematical
approach is nevertheless substantially different.

2 Protein-DNA binding

We decompose the binding problem intotransportandlocal binding. By transport, we refer to the
mechanism that transports proteins to the neighborhood of sites to which they have affinity. The
biological processes underlying the transport are not well-understood although several hypotheses
exist[12, 5]. We abstract the process initially by assuming separate affinities for proteins to explore
neighborhoods of specific sites, modulated by whether the sites are available. This abstraction does
not address the dynamics of the transport process and therefore does not distinguish (nor stand in
contradiction to) underlying mechanisms that may or may not involve diffusion as a major com-



ponent. We aim to capture the differentiated manner in which proteins may accumulate in the
neighborhoods of sites depending on the overall nuclear concentrations and regardless of the time
involved.

Local binding, on the other hand, captures which proteins bind to each site as a consequence of
local accumulations or concentrations around the site or a larger region. In asteady state, the local
environment of the site is assumed to beclosedandwell-mixed. We therefore model the binding
as being governed by chemical equilibria: for a type of proteini around sitej, {free protein i} +
{free site j} 
 {bound ij}, where concentrations involving the site should be thought of as time
averages or averages across a population of cells depending on the type of predictions sought. The
concentrations of various molecular species around and bound to the sites as well as the rate at
which the sites are occupied are then governed by the law of mass action at chemical equilibrium:
[boundij]/([free proteini][free sitej]) = Kij , wherei ranges over proteins with affinity to sitej
andKij is a positive equilibrium constant characterizing proteini’s ability to bind to sitej in the
absence of other proteins.

Broadly speaking, the combination of transport and local binding results in an arrangement of pro-
teins along the possible DNA binding sites. This is what we aim to predict with our game-theoretic
models, not how such arrangements are reached. The predictions should be viewed as functions of
the overall (nuclear) concentrations of proteins, the affinities of proteins to explore neighborhoods
of individual sites, as well as the equilibrium constants characterizing the ability of proteins to bind
to specific sites when in close proximity. Any perturbation of such parameters leads to a potentially
different arrangement that we can predict.

3 Game Theoretic formulation

There are two types of players in our game, proteins and sites. Aprotein-playerrefers to a type
of protein, not an individual protein, and decides how its nuclear concentration is allocated to the
proximity of sites (transport process). The protein-players are assumed non-cooperative and rational.
In other words, their allocations are based on the transport affinities and the availability of sites rather
than through some negotiation process involving multiple proteins. The non-coopeative nature of
the protein allocations does not, however, preclude the formation of protein complexes or binding
facilitated by other proteins. Such extensions can be incorporated at the sites.

Each possible binding site is associated with asite-player. Site-players choose the fraction of time
(or fraction of cells in a population) a specific type of protein is bound to the site. The site may also
remain empty. The strategies of the site-players are guided by local chemical equilibria. Indeed, the
site-players are introduced merely to reproduce this physical understanding of the binding process
in a game theoretic context. The site-players are non-cooperative and self-interested, always aiming
and succeeding at reproducing the local chemical equilibria.

The binding game has no global objective function that serves to guide how the players choose their
strategies. The players choices are instead guided by their own utilities that depend on the choices of
other players. For example, the protein-player allocates its nuclear concentration to the proximity of
the sites based on how occupied the sites are, i.e., in a manner that depends on the strategies of the
site-players. Similarly, the site-players reproduce the chemical equilibrium at the sites on the basis
of the available local protein concentrations, i.e., depending on the choices of the protein-players.

The predictions we can make based on the game theoretic formulation areequilibria of the game(not
to be confused with the local chemical equilibria at the sites). At an equilibrium, no reallocation of
proteins to sites is required and, conversely, the sites have reproduced the local chemical equilibria
based on the current allocations of proteins. While games need not have equilibria in pure strategies
(actions available to the players), our game will always have one.

4 The binding game

To specify the game more formally we proceed to define players’ strategies, their utilities, and the
notion of an equilibrium of the game. To this end, letf i represent the (nuclear) concentration of
proteini. This is the amount of protein available to be allocated to the neighborhoods of sites. The
fraction of proteini allocated to sitej is specified bypi

j , where
∑

j pi
j = 1. The numerical values



of pi
j , wherej ranges over the possible sites, define a possible strategy for theith protein player.

The set of such strategies is denoted byPi. The choices of which strategies to play are guided by
parametersEij , the affinity of proteini to explore the neighborhood of sitej (we will generally
index proteins withi and sites withj). The utility for proteini, defined below, provides a numerical
ranking of possible strategy choices and is parameterized byEij . Each player aims to maximize its
own utility over the set of possible strategy choices.

The strategy for site-playerj specifies the fraction of time that each type of protein is actually bound
to the site. The strategy is denoted bysj

i , wherei ranges over proteins with affinity to the site. Note
that the values ofsj

i are in principle observable from binding assays (cf. [9]).
∑

i sj
i ≤ 1 since there

is only one site and it may remain empty part of the time. The availability of sitej is 1−
∑

i sj
i ≤ 1,

i.e., the fraction of time that nothing is bound. We will also useαj =
∑

i sj
i to denote how occupied

the site is. The utilities of the site players will depend onKij , the chemical equilibrium constants
characterizing the local binding reaction between proteini and sitej.

Utilities The utility function for protein-playeri is formally defined as

ui(pi, s) ≡
∑

j

pi
jEij(1−

∑
i′

sj
i′) + βH(pi) (1)

whereH(pi) = −
∑

j pi
j log pi

j is the Shannon entropy of the strategypi
j andj ranges over possible

sites. The utility of the protein-player essentially states that proteini “prefers” to be around sites
that are unbound and for which it has high affinity. The parameterβ ≥ 0 balances how much protein
allocations are guided by the differentiated process, characterized by the exploration affinitiesEij ,
as opposed to allocated uniformly (maximizing the entropy function). Since the overall scaling of
the utilities is immaterial, only the ratiosEij/β are relevant for guiding the protein-players. Note
that since the utility depends on the strategies of site-players through(1−

∑
i′ sj

i′), one cannot find
the equilibrium strategy for proteins by consideringsj

i to be fixed; the sites will respond to anypi
j

chosen by the protein-player.

As discussed earlier, the site-players always reproduce the chemical equilibrium between the site
and the protein species allocated to the neighborhood of the site. The utility for site-playeri is
defined such that the maximizing strategy corresponds to the chemical equilibrium:

sj
i /

[
(pi

jf
i − sj

i )(1−
∑
i′

sj
i′)

]
= Kij (2)

wheresj
i specifies how much proteini is bound, the first term in the denominator(pi

jf
i − sj

i )
specifies the amount of free proteini, and the second term(1−

∑
i′ sj

i′), the fraction of time the site
is available. The equilibrium equation holds for all protein species around the site and for the same
strategy{sj

i} of the site-player. The units of each “concentration” in the above equation should be
interpreted as numbers of available molecules (e.g., there’s only one site). The utility function that
reproduces this chemical equilibrium when maximized over possible strategies is given by

vj(sj , p) ≡
∑

i

sj
i −Kij(pi

jf
i − sj

i )
(
1−

∑
i′

sj
i′

)
(3)

subject tosj
i ≤ Kij(pi

jf
i − sj

i )(1 −
∑

i′ sj
i′), sj

i ≤ pi
jf

i, and
∑

i′ sj
i′ ≤ 1. These constraints

guarantee that the utility is always non-positive and zero exactly when the chemical equilibrium
holds.sj

i ≤ pi
jf

i ensures that we cannot have more protein bound than is allocated to the proximity
of the site. These constraints define the set of strategies available for site-playerj or Sj(p). Note
that the available strategies for the site-player depend on the current strategies for protein-players.
The set of strategiesSj(p) is not convex.

4.1 The game and equilibria

Theprotein-DNA binding gameis now fully specified by the set of parameters{Eij/β}, {Kij} and
{f i}, along with the utility functions{ui} and{vj} and the allocation constraints{Pi} and{Sj}.
We assume that the biological system being modeled reaches a steady state, at least momentarily,
preserving the average allocations. In terms of our game theoretic model, this corresponds to what



we call anequilibrium of the game. Informally, an equilibrium of a game is a strategy for each
player such that no individual has any incentive to unilaterally deviate from their strategy. Formally,
if the allocations(p̄, s̄) are such that for each proteini and each sitej,

p̄i ∈ arg max
pi∈Pi

ui(pi, s̄), ands̄j ∈ arg max
sj∈Sj(p̄j)

vj(sj , p̄j), (4)

then we call(p̄, s̄) anequilibriumof the protein-DNA binding game. Put another way, at an equilib-
rium, the current strategies of the players must be among the strategies that maximize their utilities
assuming the strategies of other players are held fixed.

Does the protein-DNA binding game always have an equilibrium? While we have already stated
this in the affirmative, we emphasize that there is no reasona priori to believe that there exists an
equilibrium in the pure strategies, especially since the sets of possible strategies for the site-players
are non-convex (cf. [2]). The existence is guaranteed by the following theorem:

Theorem 1. Every protein-DNA binding game has an equilibrium.

A constructive proof is provided by the algorithm discussed below. The theorem guarantees that at
least one equilibrium exists but there may be more than one. At any such equilibrium of the game, all
the protein species around each site are at a chemical equilibrium; that is, if(p̄, s̄) is an equilibrium
of the game, then for all sitesj and proteinsi, s̄j andp̄i

j satisfy (2). Consequently, the site utilities
vj(s̄j , p̄j) are all zero for the equilibrium strategies.

4.2 Computing equilibria

The equilibria of the binding game represent predicted binding arrangements. Our game has special
structure and properties that permit us to find an equilibrium efficiently through a simple iterative
algorithm. The algorithm monotonically fills the sites up to the equilibrium levels, starting with all
sites empty.

We begin by first expressing any joint equilibrium strategy of the game as a function of how filled the
sites are, and reduce the problem of finding equilibria to finding fixed points of a monotone function.
To this end, letαj =

∑
i′ sj

i′ denote sitej occupancy, the fraction of time it is bound by any protein.
αj ’s are real numbers in the interval[0, 1]. If we fix α = (α1, . . . , αm), i.e., the occupancies for all
them sites, then we can readily obtain the maximizing strategies for proteins expressed as a function
of site occupancies:pi

j(α) ∝ exp(Eij(1 − αj)/β), where the maximizing strategies are functions
of α. Similarly, at the equilibrium, each site-player achieves a local chemical equilibrium specified
in (2). By replacingαj =

∑
i′ sj

i′ , and solving forsj
i in (2), we get

sj
i (α) =

Kij(1− αj)
1 + Kij(1− αj)

pi
j(α) f i (5)

So, for example, the fraction of time the site is bound by a specific protein is proportional to the
amount of that protein in the neighborhood of the site, modulated by the equilibrium constant. Note
that sj

i (α) depends not only on how filled sitej is but also on how occupied the other sites are
throughpi

j(α).

The equilibrium condition can be now expressed solely in terms ofα and reduces to a simple con-
sistency constraint: overall occupancy should equal the fraction of time any protein is bound or

αj =
∑

i

sj
i (α) =

∑
i

Kij(1− αj)
1 + Kij(1− αj)

pi
j(α) f i = Gj(α) (6)

We have therefore reduced the problem of finding equilibria of the game to finding fixed points of
the mappingGj(α) =

∑
i sj

i (α). This mapping, written explicitly as has a simple but powerful
monotonicity property that forms the basis for our iterative algorithm. Specifically,

Lemma 1. Let α−j denote all componentsαk exceptαj . Then for eachj, Gj(α) ≡ Gj(αj , α−j)
is a strictly decreasing function ofαj for any fixedα−j .

We omit the proof as it is straightforward. This lemma, together with the fact thatGj(1, α−j) = 0,
immediately guarantees that there is auniquesolution toαj = Gj(αj , α−j) for any fixed and valid
α−j . The solutionαj also lies in the interval[0, 1] and can be found efficiently via binary search.



The algorithm Let α(t) denote the site occupancies at thetth iteration of the algorithm.αj(t)
specifies thejth component of this vector, whileα−j(t) contains all but thejth component. The
algorithm proceeds as follows:

• Setαj(0) = 0 for all j = 1, . . . ,m.

• Find each new componentαj(t + 1), j = 1, . . . ,m, on the basis of the corresponding
α−j(t) such thatαj(t + 1) = Gj(αj(t + 1), α−j(t))

• Stop whenαj(t + 1) ≈ αj(t) for all j = 1, . . . ,m.

Note that the inner loop of the algorithm, i.e., findingαj(t + 1) on the basis ofα−j(t) reduces
to a simple binary search as discussed earlier. The algorithm generates a monotonically increasing
sequence ofα’s that converge to a fixed point (equilibrium) solution.

We also provide a formal convergence analysis of the algorithm. To this end, we begin with the
following critical lemma.

Lemma 2. Let α1 and α2 be two possible assignments toα. If for all k 6= j, αk
1 ≤ αk

2 , then
Gj(αj , α−j

1 ) ≤ Gj(αj , α−j
2 ) for all αj .

The proof is straightforward and essentially based on the fact thatα−j
1 andα−j

2 appear only in the
normalization terms for the protein allocations. We omit further details for brevity. On the basis of
this lemma, we can show that the algorithm indeed generates a monotonically increasing sequence
of α’s

Theorem 2. αj(t + 1) ≥ αj(t) for all j andt.

Proof. By induction. Sinceαj(0) = 0 and the range ofGj(αj , α−j(0)) lies in [0, 1], clearly
αj(1) ≥ αj(0) for all j. Assume then thatαj(t) ≥ αj(t − 1) for all j. We extend the induc-
tion step by contradiction. Supposeαj(t + 1) < αj(t) for somej. Then

αj(t + 1) < αj(t) = Gj(αj(t), α−j(t− 1)) ≤ Gj(αj(t), α−j(t))

< Gj(αj(t + 1), α−j(t)) = αj(t + 1)

which is a contradiction. The first “≤” follows from the induction hypothesis and lemma 2, and the
last “<” derives from lemma 1 andαj(t + 1) < αj(t).

Since αj(t) for any t will always lie in the interval[0, 1], and because of the continuity of
Gj(αj , α−j) in the two arguments, the algorithm is guaranteed to converge to a fixed point so-
lution. More formally, the Monotone Convergence Theorem for sequences and the continuity of
Gj ’s imply that

Theorem 3. The algorithm converges to a fixed pointᾱ such that̄αj = Gj(ᾱj , ᾱ−j) for all j.

4.3 Theλ-phage binding game

We use the well-knownλ-phage viral infection [11, 1] to illustrate the game theoretic approach.
A genetic two-state control switch specifies whether the infection remains dormant (lysogeny) or
whether the viral DNA is aggressively replicated (lysis). The components of theλ−switch are 1)
two adjacent genescI andCro that encodecI2 andCro proteins, respectively; 2) the promoter regions
PRM and PR of these genes, and 3) an operator (OR) with three binding sitesOR1, OR2, andOR3.
We focus on lysogeny, in which cI2 dominates over Cro. There are two relevant protein-players,
RNA-polymerase and cI2, and three sites, OR1, OR2, and OR3 (arranged close together in this
order). Since the presence of cI2 in either OR1 or OR3 blocks the access of RNA-polymerase to the
promoter regionPR, or PRM respectively, we can safely restrict ourselves to operator sites as the
site-players. There are three phases of operation depending on the concentration of cI2:

1. cI2 binds to OR1 first and blocks the Cro promoterPR

2. Slightly higher concentrations of cI2 lead to binding at OR2 which in turn facilitates RNA-
polymerase to initiate transcription atPRM

3. At sufficiently high levels cI2 also binds to OR3 and inhibits its own transcription
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(c) OR1

Figure 1:Predicted protein binding to sites OR3, OR2, and OR1 for increasing amounts of cI2. The rightmost
figure illustrates a comparison with [1]. The shaded area indicates the range of concentrations ofcI2 at which
stochastic simulation predicts a decline in transcription from OR1. Our model predicts thatcI2 begins to occupy
OR1 at the same concentration.

Game parameters The game requires three sets of parameters: chemical equilibrium constants,
affinities, and protein concentrations. To use constants derived from experiment we assign units to
these quantities. We definef i as the total number of proteinsi available, and arrange the units of
Kij accordingly:

f i ≡ f̃ i VT NA, Kij ≡ K̃ij/(NAVS) K̃ij = e−∆G/RT (7)

whereVT andVS are the volumes of cell and site neighborhood, respectively,NA is the Avogadro
number,R is the universal gas constant,T is temperature,̃f i is the concentration of proteini in the
cell, andK̃ij is the equilibrium constant in units of`/mol. As we show in [3] these definitions are
consistent with our previous derivation. Note that when game parameters are learned from data any
dependence on the volumes will be implicit. For a typicalEscherichia coli( 2µm length) at room
temperature, the Gibbs’ Free energies∆G tabulated by [11] yield the equilibrium constants shown
below; in addition, we set transport affinities in accordance with the qualitative description in [7, 8],

Kij OR3 OR2 OR1
cI2 .0020 .0020 .0296
RNA-p .0212 0 .1134

Eij OR3 OR2 OR1
cI2 .1 .1 1
RNA-p .2 .01 1

Note that the overall scaling of the affinities is immaterial; only their relative values will guide the
protein-players. Note also that we have chosen not to incorporate any protein-protein interactions in
the affinities.

Finally, we setf̃RNA−p = 30nM (cf. [11]) (aroundfRNA−p ' 340 copies for a typicalE. coli).
And variedfcI2 from 1 to 10, 000 copies to study the dynamical behavior of the lysogeny cycle. The
results are reported as a function of the ratiofcI2/fRNA−p. We setβ = 10−5.

Simulation Results The predictions from the game theoretic model exactly mirror the known be-
havior. Here we summarize the main results and refer the reader to [3] for a thorough analysis.

Figure 1 illustrates how the binding at different sites changes as a function of increasingfcI2 . The
simulation mirrors the behavior of the lysogeny cycle discussed earlier. Although our model does
not capture dynamics, and figure 1 does not involve time, it is nevertheless useful for assessing
quantitative changes and the order of events as a function of increasingfcI2 . Note, for example,
that the levels at which cI2 occupies OR1 and OR2 rise much faster than at OR3. While the result
is expected, the behavior is attributed to protein-protein interactions which are not encoded in our
model. Similarly, RNA-polymerase occupation at OR3 bumps up as the probability that OR2 is
bound by cI2 increases. In [3] we further discuss the implications of the simultaneous occupancy of
OR1 and OR2, via simulation of OR1 knockout experiments.

Finally, figure 1(c) shows a comparison with stochastic simulation (v. [1]). Our model predicts that
cI2 begins bindingOR1 at the same level as [1] predicts a decline in the transcription of Cro. While
consistent, we emphasize that the methods differ in their goals; stochastic simulation focuses on the
dynamics of transcription while we study the strategic allocation of proteins as a function of their
concentration.



4.4 A structured extension

The game theoretic formulation of the binding problem described previously involves a transport
mechanism that is specific to individual sites. In other words, proteins are allocated to the proximity
of sites based on parametersEij and occupanciesαj associated with individual sites. We generalize
the game further here by assuming that the transport mechanism has a coarser spatial structure, e.g.,
specific to promoters (regulatory regions of genes) rather than sites. In this extension the amount
of protein allocated to any promoter is shared by the sites it contains. The sharing creates specific
challenges to the algorithms for finding the equilibria and we will address those challenges here.

Let R represent possible promoter regions each of which may be bound by multiple proteins (at
distinct or overlapping sites). Letpi = {pi

r}r∈R represent an allocation of proteini into these
regions in a manner that is not specific to the possible sites within each promoter. The utility for
proteini is given by

ui(pi) =
∑
r∈R

pi
r Eir(ar) + βH(pi)

whereN(r) is the set of possible binding sites within promoter regionr andar =
∑

j∈N(r) αj

is the overall occupancy of the promoter (how many proteins bound). As before,αj =
∑

i∈P sj
i ,

where the summation is over proteins.N(r) ∩ N(r′) = ∅ wheneverr 6= r′ (promoters don’t
share sites). We assume only thatEir(ar) is a decreasing and a differentiable function ofar. The
protein utility is based on the assumption that the attraction to the promoter decreases based on the
number of proteins already bound at the promoter. The maximizing strategy for proteini given
ar =

∑
j∈N(r) αj for all r, is pi

r(a) ∝ exp(Eir(ar)/β), wherea = {ar}r∈R.

Sitesj ∈ N(r) within a promoter regionr reproduce the following chemical equilibrium

sj
i /

[
(f ipi

r(a)−
∑

k∈N(r) sk
i )(1− αj)

]
= Kij

for all proteinsi ∈ P . Note the shared protein resource within the promoter. We can find this
chemical equilibrium by solving the following fixed point equations

αj =
∑
i∈P

Kij(1− αj)
1 +

∑
k∈N(r) Kik(1− αk)

f ipi
r(a) = Gj

r(α, a−r)

The site occupanciesαj are now tied within the promoter as well as influencing the overall allocation
of proteins across different promoters througha = {ar}r∈R. The following theorem provides the
basis for solving the coupled fixed point equations:

Theorem 4. Let {α̂j
1} be the fixed point solutionαj

1 = Gj
r(α1, a

−r
1 ) and {α̂j

2} the solution to
αj

2 = Gj
r(α2, a

−r
2 ). If al

1 ≤ al
2 for all l 6= r thenâr

1 ≤ âr
2.

The proof is not straightforward but we omit it for brevity (two pages). The result guarantees that if
we can solve the fixed point equations within each promoter then the overall occupancies{ar}r∈R
have the same monotonicity property as in the simpler version of the game wherear consisted of a
single site. In other words, any algorithm that successively solves the fixed point equations within
promoters will result in a monotone and therefore convergent filling of the promoters, beginning
with all empty promoters.

We will redefine the notation slightly to illustrate the algorithm for finding the solutionαj =
Gj

r(α, a−r) for j ∈ N(r) wherea−r is fixed. Specifically, let

Gj
r(α

j , α−j , ᾱj , a−r) =
∑
i∈P

Kij(1− αj)
1 + Kij(1− αj) +

∑
k 6=j Kik(1− αk)

f ipi
r(α

j , ᾱ−j , a−r)

In other words, the first argument refers toαj anywhere on the right hand side, the second argument
refers toα−j in the denominator of the first expression in the sum, and the third argument refers to
α−j in pi

r(·). The algorithm is now defined as follows: initialize by settingαj(0) = 0 andᾱj(0) = 1
for all j ∈ N(r), then

Iteration t, upper bounds:Find α̂j = Gj
r(α̂

j , ᾱ−j(t), α−j(t), a−r) separately for each
j ∈ N(t). Updateᾱj(t + 1) = α̂j , j ∈ N(r)



Iteration t, lower bounds:Find α̂j = Gj
r(α̂

j , α−j(t), ᾱ−j(t + 1), a−r) separately for each
j ∈ N(r). Updateαj(t + 1) = α̂j , j ∈ N(r)

The iterative optimization proceeds until1 ᾱj(t) − αj(t) ≤ ε for all j ∈ N(r). The algorithm
successively narrows down the gap between upper and lower bounds. Specifically,ᾱj(t + 1) ≤
ᾱj(t) andαj(t + 1) ≥ αj(t). The fact that these indeed remain upper and lower bounds follows
directly from the fact thatGj

r(·, α−j , ᾱj , a−r), viewed as a function of the first argument, increases
uniformly as we increase the components of the second argument. Similarly, it uniformly decreases
as a function of the third argument.

5 Discussion

We have presented a game theoretic approach to predicting protein arrangements along the DNA.
The model is complete with convergent algorithms for finding equilibria on a genome-wide scale.
The results from the small scale application are encouraging. Our model successfully reproduces
known behavior of theλ−switch on the basis of molecular level competition and resource con-
straints, without the need to assume protein-protein interactions between cI2 dimers and cI2 and
RNA-polymerase. Even in the context of this well-known sub-system, however, few quantitative
experimental results are available about binding (see the comparison). Proper validation and use of
our model therefore relies on estimating the game parameters from available protein-DNA binding
data. This will be addressed in subsequent work.

This work was supported in part by NIH grant GM68762 and by NSF ITR grant 0428715. Luis
Pérez-Breva is a “Fundación Rafael del Pino” Fellow.
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