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Abstract

Classification with partially labeled data requires using a large number
of unlabeled examples (or an estimated marginalP (x)), to further con-
strain the conditionalP (y|x) beyond a few available labeled examples.
We formulate a regularization approach to linking the marginal and the
conditional in a general way. The regularization penalty measures the
information that is implied about the labels over covering regions. No
parametric assumptions are required and the approach remains tractable
even for continuous marginal densitiesP (x). We develop algorithms for
solving the regularization problem for finite covers, establish a limiting
differential equation, and exemplify the behavior of the new regulariza-
tion approach in simple cases.

1 Introduction

Many modern classification problems are rife with unlabeled examples. To benefit from
such examples, we must exploit either implicitly or explicitly the link between the marginal
densityP (x) over examplesx and the conditionalP (y|x) representing the decision bound-
ary for the labelsy. High density regions or clusters in the data, for example, can be ex-
pected to fall solely in one or another class.

Most discriminative methods do not attempt to explicitly model or incorporate information
from the marginal densityP (x). However, many discriminative algorithms such as SVMs
exploit the notion of margin that effectively relatesP (x) to P (y|x); the decision boundary
is biased to fall preferentially in low density regions ofP (x) so that only a few points fall
within the margin band.

The assumptions relatingP (x) toP (y|x) are seldom made explicit. In this paper we appeal
to information theory to explicitly constrainP (y|x) on the basis ofP (x) in a regularization
framework. The idea is in broad terms related to a number of previous approaches including
maximum entropy discrimination [1], data clustering by information bottleneck [2], and
minimum entropy data partitioning [3]. See also [4].
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Figure 1: Mutual informationI(x; y) measured in bits for four regions with different con-
figurations of labelsy= {+,-}. The marginalP (x) is discrete and uniform across the points.
The mutual information is low when the labels are homogenous in the region, and high
when labels vary. The mutual information is invariant to the spatial configuration of points
within the neighborhood.

2 Information Regularization

We begin by showing how to regularize a small region of the domainX . We will subse-
quently cover the domain (or any chosen subset) with multiple small regions, and describe
criteria that ensure regularization of the whole domain on the basis of the individual re-
gions.

2.1 Regularizing a Single Region

Consider a small contiguous regionQ in the domainX (e.g., anε-ball). We will regularize
the conditional probabilityP (y|x) by penalizing the amount of information the condition-
als imply about the labels within the region.

The regularizer is a function of bothP (y|x) andP (x), and will penalize changes inP (y|x)
more in regions with highP (x). Let L be the set of labeled points (sizeNL) andL ∪ U
be the set of labeled and unlabeled points (sizeNLU ). The marginalP (x) is assumed to
be given, and may be available directly in terms of a continuous density, or as an empirical
densityP (x) = 1/NLU ·

∑
i∈L∪U δ(x − xi) corresponding to a set of points{xi} that

may not have labels (δ(·) is the Dirac delta function integrating to 1).

As a measure of information, we employ mutual information [5], which is the average
number of bits thatx contains about the label in regionQ (see Figure 1.) The measure
depends both on the marginal densityP (x) (specifically its restriction tox ∈ Q namely
P (x|Q) = P (x)/

∫
Q

P (x) dx) and the conditionalP (y|x). Equivalently, we can interpret
mutual information as a measure of disagreement amongP (y|x), x ∈ Q. The measure is
zero for any constantP (y|x). More precisely, the mutual information in regionQ is

IQ(x; y) =
∑

y

∫
x∈Q

P (x|Q)P (y|x) log
P (y|x)
P (y|Q)

dx, (1)

whereP (y|Q) =
∫

x∈Q
P (x|Q)P (y|x) dx. The densities conditioned onQ are normalized

to integrate to 1 within the regionQ. Note that the mutual information is invariant to
permutations of the elements ofX within Q, which suggests that the regions must be small
enough to preserve locality.

The regularization penalty has to further scale with the number of points in the region (or
the probability mass). We introduce the following regularization principle:



Information regularization
penalize(MQ/VQ) · IQ(x; y), which is the information about the labels
within a local regionQ, weighted by the overall probability massMQ in
the region, and normalized by a measure of variabilityVQ (variance) of
x in the region.

HereMQ =
∫

x∈Q
P (x) dx. The mutual informationIQ(x; y) measures the information

per point, and to obtain the total mutual information contained in a region, we must multi-
ply by the probability massMQ. The regularization will be stronger in regions with high
P (x).

VQ is a measure of variance ofx restricted to the region, and is introduced to remove
overall dependence on the size of the region. In one dimension,VQ = var(x|Q). When the
region is small, then the marginal will be close to uniform over the region andVQ ∝ R2,
whereR is, e.g., the radius for spherical regions. We omit here the analysis of thed-
dimensional case and only note that we may chooseVQ = tr ΣQ, where the covariance
ΣQ =

∫
x∈Q

(x − EQ(x))(x − EQ(x))T P (x|Q) dx. The choice ofVQ is based on the
limiting argument discussed next.

2.2 Limiting Behavior for Vanishing Size Regions

When the size of the region is scaled down, the mutual information will go to zero for any
continuousP (y|x). We derive here the appropriate regularization penalty in the limit of
vanishing regions. For simplicity, we only consider the one-dimensional case.

Within a small regionQ we can (under mild continuity assumptions) approximateP (y|x)
by a Taylor expansion around the mean pointx0 ∈ Q, obtainingP (y|Q) ≈ P (y|x0) to
first order. By usinglog(1 + z) ≈ z − z2/2 and substituting the approximateP (y|x) and
P (y|Q) into IQ(x; y), we get the following first order expression for mutual information:

IQ(x; y) =
1
2

var(x|Q)︸ ︷︷ ︸
size-dependent

∑
y

P (y|x0)
d log P (y|x)

dx

∣∣∣∣2
x0︸ ︷︷ ︸

size-independent

(2)

var(x|Q) is dependent on the size (and more generally shape) of regionQ while the re-
maining parts are independent of the size (and shape). The regularization penalty should
not scale with the resolution at which we penalize information and we thus divide out the
size-dependent part.

The size-independent part is the Fisher information [5], where we think ofP (y|x) as pa-
rameterized byx. The expressiond log P (y|x)/dx is known as the Fisher score.

2.3 Regularizing the Domain

We want to regularize the conditionalP (y|x) across the domainX (or any subset of inter-
est). Since individual regions must be relatively small to preserve locality, we need multiple
regions to cover the domain. The cover is the setC of these regions. Since the regularization
penalty is assigned to each region, the regions must overlap to ensure that the conditionals
in different regions become functionally dependent. See Figure 2.

In general all areas with significant marginal densityP (x) should be included in the cover
or will not be regularized (areas of zero marginal need not be considered). The cover should
generally be connected (with respect to neighborhood relations of the regions) so that la-
beled points have potential to influence all conditionals. The amount of overlap between
any two regions in the cover determines how strongly the corresponding conditionals are



tied to each other. On the other hand, the regions should be small to preserve locality.
The limit of a large number of small overlapping regions can be defined, and we ensure
continuity ofP (y|x) when the offset between regions vanishes relative to their size (in all
dimensions).

3 Classification with Information Regularization

Information regularization across multiple regions can be performed, for example, by
minimizing the maximum information per region, subject to correct classification of the
labeled points. Specifically, we constrain each region in the cover (Q ∈ C) to carry at most
γ units of information.

min
P (y|xk), γ

γ (3a)

s.t. (MQ/VQ) · IQ(x; y) ≤ γ ∀Q ∈ C (3b)

P (y|xk) = δ(y, ỹk) ∀k ∈ L (3c)

0 ≤ P (y|xk) ≤ 1,
∑

y P (y|xk) = 1 ∀k ∈ L ∪ U, ∀y. (3d)

We have incorporated the labeled points by constraining their conditionals to the observed
values (eq. 3c) (see below for other ways of incorporating labeled information). The
solution P (y|x) to this optimization problem is unique in regions that achieve the
information constraint with equality (as long asP (x) > 0). (Uniqueness follows from the
strict convexity of mutual information as a function ofP (y|x) for nonzeroP (x)).

Define anatomicsubregion as a non-empty intersection of regions that cannot be further
intersected by any region (Figure 2). All unlabeled points in an atomic subregion belong
to the same set of regions, and therefore participate in exactly the same constraints. They
will be regularized the same way, and since mutual information is a convex function, it will
be minimized when the conditionalsP (y|x) are equal in the atomic subregion. We can
therefore parsimoniously represent conditionals of atomic subregions, instead of individual
points, merely by treating such atomic subregions as “merged points” and weighting the
associated constraint by the probability mass contained in the subregion.

3.1 Incorporating Noisy Labels

Labeled points participate in the information regularization in the same way as unlabeled
points. However, their conditionals have additional constraints, which incorporate the label
information. In equation 3c we used the constraintP (y|xk) = δ(y, ỹk) for all labeled
points. This constraint does not permit noise in the labels (and cannot be used when two
points at the same location have disagreeing labels.) Alternatively, we can apply either of
the constraints

(fix-lbl): P (y|xi) = (1− b)δ(y,ỹi)b1−δ(y,ỹi), ∀i ∈ L

(exp-lbl): EP (i)[P (ỹi|xi)] ≥ 1− b. The expectation is over the labeled setL,
whereP (i) = 1/NL.

The parameterb ∈ [0, 0.5) models the amount of label noise, and is determined from prior
knowledge or can be optimized via cross-validation.

Constraint(fix-lbl) is written out for the binary case for simplicity. The conditionals
of the labeled points are directly determined by their labels, and are treated as fixed con-
stants. Sinceb < 0.5, the thresholded conditional classifies labeled points in the observed
class. In constraint(exp-lbl) , the conditionals for labeled points can have an average



error at mostb, where the averaged is over all labeled points. Thus, a few points may have
conditionals that deviate significantly from their observed labels, giving robustness against
mislabeled points and outliers.

To obtain classification decisions, we simply choose the class with the maximum posterior
yk = argmaxy P (y|xk). Working with binary valuedP (y|x) ∈ 0, 1 directly would yield a
more difficult combinatorial optimization problem.

3.2 Continuous Densities

Information regularization is also computationally feasible for continuous marginal den-
sities, known or estimated. For example, we may be given a continuous unlabeled data
distributionP (x) and a few discrete labeled points, and regularize across a finite set of
covering regions. The conditionals are uniform inside atomic subregions (except at labeled
points), requiring estimates of only a finite number of conditionals.

3.3 Implementation

Firstly, we choose appropriate regions forming a cover, and find the atomic subregions.
The choices differ depending on whether the data is all discrete or whether continuous
marginalsP (x) are given. Secondly, we perform a constrained optimization to find the
conditionals.

If the data is all discrete, create a spherical region centered at every labeled and unlabeled
point (or over some reduced set still covering all the points). We have used regions of fixed
radiusR, but the radius could also be set adaptively at each point to the distance of itsK-
nearest neighbor. The union of such regions is our cover, and we choose the radiusR (or
K) large enough to create a connected cover. The cover induces a set of atomic subregions,
and we merge the parametersP (y|x) of points inside individual atomic subregions (atomic
subregions with no observed points can be ignored). The marginal of each atomic subregion
is proportional to the number of (merged) points it contains.

If continuous marginals are given, they will put probability mass in all atomic subregions
where the marginal is non-zero. To avoid considering an exponential number of subregions,
we can limit the overlap between the regions by creating a sparser cover.

Given the cover, we now regularize the conditionalsP (y|x) in the regions, according to
eq. 3a. This is a convex minimization problem with a global minimum, since mutual in-
formation is convex inP (y|x). It can be solved directly in the given primal form, using a
quasi-Newton BFGS method. For eq. 3a, the required gradients of the constraints for the
binary class (y = {±1}) case (regionQ, atomic subregionr) are:

MQ

VQ

dIQ(x; y)
dP (y = 1|xr)

=
MQ

VQ
P (xr|Q)

(
log

P (y = 1|xr)
P (y = −1|xr)

P (y = −1|Q)
P (y = 1|Q)

)
. (4)

The Matlab BFGS implementationfmincon can solve 100 subregion problems in a few
minutes.

3.4 Minimize Average Information

An alternative regularization criterion minimizes the average mutual information across
regions. When calculating the average, we must correct for the overlaps of intersecting
regions to avoid doublecounting (in contrast, the previous regularization criterion (eq. 3b)
avoided doublecounting by restricting information in each region individually). The influ-
ence of a region is proportional to the probability massMQ contained in it. However, a
pointx may belong toN(x) regions. We define an adjusted densityP ∗(x) = P (x)/N(x)



to calculate an adjusted probability massM∗
Q which discounts overlap. We can then

minimize average mutual information according to

min
P (y|xk)

∑
Q

M∗
Q

VQ
IQ(x; y) (5a)

s.t. P (y|xk) = δ(y, ỹk) ∀k ∈ L (5b)

0 ≤ P (y|xk) ≤ 1,
∑

y P (y|xk) = 1 ∀k ∈ L ∪ U, ∀y. (5c)

with similar necessary adjustments to incorporate noisy labels.

3.4.1 Limiting Behavior

The above average information criterion is a discrete version of a continuous regularization
criterion. In the limit of a large number of small regions in the cover (where the spacing of
the regions vanishes relative to their size), we obtain a well-defined regularization criterion
resulting in continuousP (y|x):

min
P (y|x) s.t.

P (ỹk|xk)=δ(y,ỹk) ∀k∈L

∫ ∑
y

P (x0)P (y|x0)
d log P (y|x)

dx

∣∣∣∣2
x0

dx0. (6)

The regularizer can also be seen as the average Fisher information (see section 2.2). More
generally, we can formulate the regularization problem as a Tikhonov regularization, where
the loss is the negative log-probability of labels:

min
P (y|x)

1
NL

∑
k∈L

− log P (ỹk|xk) + λ

∫ ∑
y

P (x0)P (y|x0)
d log P (y|x)

dx

∣∣∣∣2
x0

dx0. (7)

3.4.2 Differential Equation Characterizing the Solution

The optimization problem (eq. 6) can be solved using calculus of variations. Consider the
one-dimensional binary class case and write the problem as

min
P (y=1|x)

∫
f
(
x, P (y = 1|x), P ′(y = 1|x)

)
dx wheref(·) = P (x)P ′(y = 1|x)2/[P (y =

1|x)(1− P (y = 1|x))]. Necessary conditions for the solutionP (y = 1|x) are provided by
the Euler-Lagrange equations [6]

∂f

∂P (y = 1|x)
− d

dx

∂f

∂P ′(y = 1|x)
= 0 ∀x. (8)

(natural boundary conditions apply since we can assumeP (x) = 0 andP ′(y|x) = 0 at the
boundary of the domainX ). After substitutingf and simplifying we have

P ′′(y = 1|x) =
P ′(y = 1|x)2(1− 2P (y = 1|x))
2P (y = 1|x)(1− P (y = 1|x))

− P ′(x)P ′(y = 1|x)
P (x)

. (9)

This differential equation governs the solution and we solve it numerically. The labeled
points provide boundary conditions, e.g.P (y = ỹk|xk) = 1 − b for some small fixed
b ≥ 0. We must search for initial values ofP ′(ỹk|xk) to match the boundary conditions of
P (ỹk|xk). The solution is continuous and piecewise differentiable.

4 Results and Discussion

We have experimentally studied the behavior of the regularizer with different marginal den-
sitiesP (x). Figure 3 shows the one-dimensional case with a continuous marginal density
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Figure 2: (Left) Three intersecting regions, and their atomic subregions (numbered).
P (y|x) for unlabeled points will be constant in atomic subregions.

Figure 3: (Right) The conditional (solid line) for a continuous marginalP (x) (dotted line)
consisting of a mixture of two continuous Gaussian and two labeled points at (x=-0.8,y=-1)
and (x=0.8,y=1). The row of circles at the top depicts the region structure used (a rendering
of overlapping one-dimensional intervals.)
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Figure 4: Conditionals (solid lines) for two continuous marginals (dotted lines) plus two
labeled points. Left: the marginal is uniform, and the conditional approaches a straight
line. Right: the marginal is a mixture of two Gaussians (with lower variance and shifted
compared to Figure 3.) The conditional changes slowly in regions of high density.

(mixture of two Gaussians), and two discrete labeled points. We chooseNQ=40 regions
centered at uniform intervals of[−1, 1], overlapping each other half-way, creatingNQ + 1
atomic subregions. There are two labeled points. We show the solution attained by min-
imizing the maximum information (eq. 3a), and using the(fix-lbl) constraint with
label noiseb = 0.05.

The conditional varies smoothly between the labeled points of opposite classes. Note the
dependence on the marginal densityP (x). The conditional is smoother in high-density
regions, and changes more rapidly in low-density regions, as expected. Figure 4 shows
more examples, and Figure 5 illustrates solutions obtained via the differential equation
(eq. 6).
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Figure 5: Conditionals for two other continuous marginals plus two labeled points (marked
as crosses and located atx=-1, 2 in the left figure andx=-2, 2 in the right), solved via the
differential equation (eq. 6). The conditionals are continuous but non-differentiable at the
two labeled points (marked as crosses).

5 Conclusion

We have presented an information theoretic regularization framework for combining con-
ditional and marginal densities in a semi-supervised estimation setting. The framework
admits both discrete and continuous (known or estimated) densities. The tractability is
largely a function of the number of nonempty intersections of chosen covering regions.

The principle extends beyond the presented scope. It provides flexible means of tailoring
the regularizer to particular needs. The shape and structure of the regions give direct ways
of imposing relations between particular variables or values of those variables. The regions
can be easily defined on low-dimensional data manifolds.

In future work we will try the regularizer on large high-dimensional datasets and explore
theoretical connections to network information theory.

Acknowledgements

The authors gratefully acknowledge support from Nippon Telegraph & Telephone (NTT) and NSF
ITR grant IIS-0085836. Tommi Jaakkola also acknowledges support from the Sloan Foundation in
the form of the Sloan Research Fellowship. Martin Szummer would like to thank Thomas Minka for
valuable comments.

References
[1] Tommi Jaakkola, Marina Meila, and Tony Jebara. Maximum entropy discrimination. Technical

Report AITR-1668, Mass. Inst. of Technology AI lab, 1999.http://www.ai.mit.edu/ .

[2] Naftali Tishby and Noam Slonim. Data clustering by markovian relaxation and the information
bottleneck method. InAdvances in Neural Information Processing Systems (NIPS), volume 13,
pages 640–646. MIT Press, 2001.

[3] Stephen Roberts, C. Holmes, and D. Denison. Minimum-entropy data partitioning using re-
versible jump Markov chain Monte Carlo.IEEE Trans. Pattern Analysis and Mach. Intell.
(PAMI), 23(8):909–914, 2001.

[4] Matthias Seeger. Input-dependent regularization of conditional density models. Unpublished.
http://www.dai.ed.ac.uk/homes/seeger/ , 2001.

[5] Thomas Cover and Joy Thomas.Elements of Information Theory. Wiley, 1991.

[6] Robert Weinstock.Calculus of Variations. Dover, 1974.

http://www.ai.mit.edu/
http://www.dai.ed.ac.uk/homes/seeger/

	Introduction
	Information Regularization
	Regularizing a Single Region
	Limiting Behavior for Vanishing Size Regions
	Regularizing the Domain

	Classification with Information Regularization
	Incorporating Noisy Labels
	Continuous Densities
	Implementation
	Minimize Average Information
	Limiting Behavior
	Differential Equation Characterizing the Solution


	Results and Discussion
	Conclusion

