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Abstract. A considerable fraction of yeast gene promoters are bound
by multiple transcription factors. To study the combinatorial interactions
of multiple transcription factors is thus important in understanding gene
regulation. In this paper, we propose a computational method to identify
the co-regulated gene groups and regulatory programs of multiple tran-
scription factors from protein-DNA binding and gene expression data.
The key concept is to characterize a regulatory program in terms of two
properties of individual transcription factors: the function of a regulator
as an activator or a repressor, and its direction of effectiveness as nec-
essary or sufficient. We apply a greedy algorithm to find the regulatory
models which optimally fit the data. Empirical analysis indicates the
inferred regulatory models agree with the known combinatorial interac-
tions between regulators and are robust against the settings of various
free parameters.

1 Introduction

The combinatorial interactions of multiple transcription factors play an essen-
tial role in transcriptional regulation. For instance, many genes are regulated by
protein complexes comprised of multiple transcription factors [1]. To model the
combinatorial interactions of transcription factors, it is necessary to relate the
states of activities of transcription factors to the expression levels of regulated
genes. Finding this relation – a regulatory program – between regulators and
regulated genes is a challenging problem since the number of possible regulatory
programs grows rapidly with the number of transcription factors involved. Sim-
plification of possible regulatory programs is therefore important for modeling
the combinatorial interactions of multiple transcription factors.

In this paper, we present a computational method that identifies the regula-
tory programs of multiple transcription factors and the genes they regulate from
both protein-DNA binding and gene expression data. The results are regulatory
models, each contains a set of transcription factors, genes putatively regulated
by these factors, and the regulatory program specifying the relation between
regulators and regulated gene expressions. We simplify a regulatory program
by characterizing it in terms of the functions and directions of effectiveness of
individual regulators. This characterization gives a simple interpretation of the



mechanisms underlying a regulatory program and greatly reduces the model
complexity.

Modeling the transcriptional regulation of multiple transcription factors has
been addressed in a considerable number of previous works. Most Bayesian net-
work models of gene expression analysis (e.g., [2–4]) focused only on the structure
of a regulatory model and did not directly infer the regulatory program. Some
authors considered the effects of single regulators separately and avoided identi-
fying the combinatorial interactions of multiple regulators (e.g., [5]). Some works
limited the scope to synergistic or complementary effects of regulator pairs, for
example, [6] and [7]. Others attacked the combinatorial functions of multiple
regulators with different computational models, such as Boolean networks [8],
regression trees [9], and many others. However, since these models targeted only
the functional relations of data, the resulting models can be difficult to interpret
in terms of the underlying mechanisms. Another approach of modeling the cir-
cuitry of multiple regulators is to systematically generate different input states
by perturbation and measure the response of regulated genes, for instance, [10].
This approach, though more reliable, is also expensive and time-consuming.

The rest of the paper is organized as follows. We will first introduce the
hypotheses and concepts of our gene regulatory model and give it a mathematical
definition. Following this introduction we will describe an algorithm to learn the
models from binding and gene expression data. We then apply the algorithm to
the CHIP-chip binding data and two large-scale gene expression datasets, and
demonstrate the modeling results and their validations. Finally we will discuss
the pros and cons of the method and directions of future extension.

2 Models of transcription regulation

2.1 Modeling hypotheses and concepts

We adopt several common hypotheses in the analysis of CHIP-chip and microar-
ray data ([2, 3, 11, 9]). First, given that a transcription factor binds to a specific
promoter, the activity of the factor is modulated by the factor’s mRNA abun-
dance. Second, genes co-regulated by a set of transcription factors (i.e., genes
appeared in the same module) can be predicted by the same regulatory pro-
gram and mRNA levels of transcription factors. For computational convenience,
we also add the following assumptions. We model the relative changes of mRNA
levels with respect to a reference condition and quantize those changes into three
states: up-regulation, down-regulation, no change.

The key idea of our model is to characterize a regulatory program in terms
of two properties of individual transcription factors. First, a transcription factor
possesses a consistent function as an activator or a repressor. This function is not
inverted in the context of combinatorial control. Second, a transcription factor
may take effect only if its expression changes in certain direction. We categorize
the direction of effectiveness into four types. A regulator is necessary if decreasing
its expression level leads to the responses opposite to its function. A regulator



Table 1. Responses of regulated genes in each combinatorial category

necessary sufficient both neither
activator f ↓⇒ g ↓ f ↑⇒ g ↑ f ↓⇒ g ↓, f ↑⇒ g ↑ g any value
repressor f ↓⇒ g ↑ f ↑⇒ g ↓ f ↓⇒ g ↑, f ↑⇒ g ↓ g any value

is sufficient if increasing its expression level leads to the responses consistent
with its function. A regulator can be both necessary and sufficient or neither
necessary nor sufficient. Unlike the function of a single regulator, we allow the
direction of effectiveness of a transcription factor varies when it participates in
different regulatory models. The predicted response of a regulatory program of
a single regulator is uniquely determined by these two properties. Table 1 lists
the predicted responses from different states of a single transcription factor.

A combinatorial function of multiple regulators gives predicted responses
under each possible input state. By assuming the function and the direction of
effectiveness of each regulator are preserved in all input states, we can construct
the combinatorial function from the predicted response corresponding to each
regulator. Briefly, each joint input state is the concatenation of the input states
of single regulators. For each joint input state, the combinatorial function reports
the consensus of predictions according to the input state and the two properties
of each regulator. If contradiction occurs then the function reports an uncertain
output. The rules of generating the output of the combinatorial function from
predictions of individual regulators are described in Section 2.2.

The functional class generated by this characterization represents only a
small subset of all possible combinatorial functions: the number of possible com-
binations of these two properties for n inputs is 8n, whereas the number of all
possible tri-state Boolean functions with n inputs is 33n

. With drastic reduc-
tion of the possible functions we obtain a more tractable class that is possible
to estimate from limited data. While the number of possible functions is still
exponential in n, we can enumerate the possibilities for small n.

Despite its simplification, characterization of a regulatory program with prop-
erties of single regulators still retains some combinatorial interactions between
regulators. Some of these combinatorial effects have clear mechanistic interpreta-
tions. For example, if all regulators in a model are necessary, then they are likely
to form a complex or cooperatively bind together on promoters. In contrast, if
all regulators are sufficient, then they may independently act on promoters. In
general, we can view a necessary regulator as essential for maintaining a basal
transcription level under the reference condition, and a sufficient regulator as
providing an additive enhancement or reduction of gene expression.

2.2 Definition of a regulatory model

We define a model of transcription regulation to have three components: a set
of transcription factors, a set of genes controlled by these transcription factors,



and a regulatory program specifying the relation between the expression data
of regulators and regulated genes. We first define a deterministic regulatory
program as a function which maps the mRNA state of transcription factors into
the mRNA state of a “typical” response of regulated genes.

f : Sn → S. (1)

where S = {−1, 0, +1} is the quantized state expression changes and n the input
size. According to the module assumption, all regulated genes in a model are
controlled by the same regulatory program.

The function of a single regulator is uniquely determined by the function
and direction of effectiveness of the regulator, as shown in Table 1. Thus at each
state of multiple regulators, we can predict the output response according to
the input state of each regulator. We adopt the following rules to synthesize the
predicted responses from single regulators. If the predicted responses are all +1s
or 0s, then the output is +1. If the predicted responses are all -1s or 0s, then
the output is -1. If the predicted responses contain both +1s and -1s, or are all
0s, then the output is 0. These rules simply report the consensus of predicted
responses and output 0 if contradiction occurs. Notice we do not distinguish
between the uncertain state and the state of an insignificant change under these
rules. We can thus construct the combinatorial function f from Table 1 and
the synthesis rules. An example of a deterministic combinatorial function of two
necessary activators is shown in Table 2.

Table 2. The combinatorial function of two necessary activators

f1 f2 g
-1 -1 -1
-1 0 -1
-1 +1 -1
0 -1 -1
+1 -1 -1
o.w. o.w. 0

The deterministic function is too rigid and does not consider the uncertainty
of the regulatory program. To take uncertainty into account, we construct a
probabilistic regulatory program as a conditional probability function:

P : Sn × S → [0, 1]. (2)

The conditional probability is related to the deterministic function in the follow-
ing way. Denote cge as the expression state of regulated gene g in experiment e,
and cRe as the expression state of regulator set R in experiment e. The condi-
tional probability P (cge|cRe, f) ≡ P (cge|f(cRe)) depends on the regulated gene
expression cge and the output of the deterministic function f(cRe). The cge that



Table 3. The table of P (cge|f(cRe))

f(cRe) P (cge = −1|f(cRe)) P (cge = 0|f(cRe)) P (cge = +1|f(cRe))
-1 1 − α α 0
0 1

3
1
3

1
3

+1 0 α 1 − α

agrees with f(cRe) is assigned a high probability. However, when f(cRe) = 0
each cge state is assigned an equal probability. Table 3 shows the conditional
probability table, where α is a free parameter.

3 Identifying regulatory models

In this section we describe a method of identifying regulatory models from
protein-DNA binding and gene expression data. We first define a scoring func-
tion (log likelihood function) of binding and expression data according to the
model. Next, we adopt a greedy algorithm to identify the models which optimize
the scoring function, and evaluate the significance of the inferred model.

3.1 Likelihood function of a regulatory model

We define a log likelihood function of a regulatory model in terms of how well it
fits binding and expression data. It contains two terms. The term corresponding
to binding data is the log likelihood ratio between the regulatory model that each
regulator binds to each regulated gene, versus the null model that the binding of
each (protein,promoter) pair occurs with probability 1

2 . The term corresponding
to expression data is the log likelihood ratio between the regulatory model that
the expression states of the regulators and regulated genes conform with the
regulatory program, versus the null model that there is no relation between the
expression states of regulators and regulated genes. The joint scoring function is
the weighted sum of these two terms.

We define the following notations for the log likelihood function of binding
and expression data. Denote M = (R, G, f) as a regulatory model, where R and
G are regulators and regulated gene sets and f the (deterministic) regulatory
program. For each r ∈ R and g ∈ G, define brg as a binary variable indicating
whether r binds to g. brg is not directly observed but through a noisy measure-
ment outcome xrg from binding data. Denote E as a collection of expression
experiments. For each r ∈ R and e ∈ E, define cre as the expression change
of regulator r in experiment e. cre is linked with a noisy measurement outcome
xre from microarray data. For each g ∈ G and e ∈ E, cge and xge are de-
fined analogously. Furthermore, denote {brg} as a state of all indicator variables
brg : r ∈ R, g ∈ G. {cre} and {cge} are defined analogously. Also denote cRe as
a state of all cre : r ∈ R in a specific experiment e.



The marginal likelihood function of binding data under a hypothesis H is

P ({xrg}|H) =
∑

{brg}

P ({brg}|H)P ({xrg}|{brg}). (3)

The conditional probability P (xrg|brg) of each pair-wise interaction reflects the
confidence of binding (for example, CHIP-chip) experiments. We use an asymp-
totic statistic and model selection criterion to calculate the ratio P (xrg |brg=1)

P (xrg |brg=0)

from the measurement p-value. Details are described in [12].
We are interested in two P ({brg}|H) priors. The only {brg} state consistent

with the regulatory model M is each factor binds to each regulated gene. Denote
this hypothesis of binding states as H1:

H1 : P ({brg}|H1) =
∏

r∈R,g∈G

δ(brg = 1). (4)

where δ(.) is the indicator function. In contrast, for a null model H0 under which
the regulators do not have any specific relation to the genes, the prior probability
of {brg} is given by

H0 : P ({brg}|H0) =
1

2|R||G| . (5)

By applying both priors and the independence of each xrg, the log likelihood
ratio becomes:

Lb(R, G) = log P ({xrg}|H1) − log P ({xrg}|H0)
= |R||G| log 2 +

∑
(r,g)[log P (xrg|brg = 1) − log(P (xrg|brg = 1) + P (xrg|brg = 0))].

(6)
The log likelihood ratio of expression data can be similarly constructed. The
marginal likelihood function of expression data under a hypothesis H is

P ({xre}, {xge}|H) =
∑

{cre},{cge}

P ({cre}, {cge}|H)P ({xre}|{cre})P ({xge}|{cge}).

(7)
Similar to binding data, the null hypothesis of expression data assigns a uniform
probability to each possible expression state {cre} and {cge}:

H0 : P ({cre}{cge}|H0) =
1

3|E|(|R|+|G|) . (8)

The alternative model H1 specifies the relation between cge and cRe in each
experiment e. It is specified by function f and Table 3. Each input state cRe is
assigned a uniform probability as in H0.

H1 : P ({cre}{cge}|H1) =
∏

e∈E

[
1

3|R|

∏

g∈G

P (cge|f(cRe))]. (9)

The conditional probabilities P ({xre}|{cre}) and P ({xge}|{cge}) are again
dataset-specific and independent of the regulatory model. We will discuss the
choice of error models in Section 4.



Combining equations 7, 8, 9, we evaluate the log likelihood ratio of expression
data. Skipping intermediate steps,

Le(R, G, f) = log P ({xre}, {xge}|H1) − log P ({xre}, {xge}|H0)
= −|E||R| log 3 +

∑
e∈E [log(

∑
v∈{−1,0,+1} Pv(e) ·

∏
g∈G

∑
cge

P (cge|v)P (xge|cge))]
+|E|(|R| + |G|) log 3 −

∑
e∈E [

∑
r∈R log(P (xre|cre = +1) + P (xre|cre = −1) + P (xre|cre = 0))

+
∑

g∈G log(P (xge|cge = +1) + P (xge|cge = −1) + P (xge|cge = 0))].
(10)

where Pv(e) denotes the probability of the regulator states in experiment e which
generate deterministic output v:

Pv(e) =
∑

{cRe}

δ(f(cRe) = v) · P (xRe|cRe). (11)

We define the joint log likelihood ratio as the weighted sum of the log likelihood
functions of binding and expression data:

L(R, G, f) = Lb(R, G) + λLe(R, G, f). (12)

λ is a free parameter specifying the relative importance of expression data with
respect to binding data. Since the number of expression experiments far ex-
ceeds the number of binding experiments, we have to degrade the importance of
expression data in order to make binding data relevant.

3.2 Algorithm of identifying regulatory models

We want to identify the regulatory models which optimize the joint scoring
function in equation 12. This problem is difficult due to the enormous number of
combinations of regulators, regulated genes and regulatory programs. We use a
greedy algorithm which incrementally incorporates regulated genes and identifies
the optimal regulatory program. The key steps in the algorithm are as follows.

1. Find a collection of regulator sets which co-bind to a certain number of genes
according to the CHIP-chip data. The thresholds of determining significant
binding events (the p-value threshold of binding data) and the number of
co-bound genes are free parameters. We set p ≤ 0.005 and regulators co-bind
to ≥ 10 genes. Furthermore, we only consider the sets of ≤ 3 regulators.

2. For each candidate regulator set, identify the optimal regulated genes and
regulatory programs. We are able to exhaust all possible regulatory programs
due to the simplifications discussed earlier. For each regulatory program, we
incrementally add genes into the regulated set, such that the log likelihood
score is maximized. Since equation 12 increases with the number of regulated
genes in the model, we have to specify a criterion for stopping adding genes
in the set. We will describe a p-value of calculation adding a new gene in
Section 3.3. We allow each gene to be assigned to multiple regulatory models.
We then compare the scores of regulatory programs (each has a different
gene set). Because the log likelihood score grows with the number of genes,



we compare the scores of fixed sized gene sets by choosing top n (n is the
fixed size) genes according to the order of adding genes. The fixed size is the
size of the smallest gene set among all regulatory programs. The result of
step 2 is a regulatory program and a regulated gene set for each regulator
set.

3. Some of the regulatory programs may be spurious or do not have functional
roles. We evaluate the p-value of a regulatory program log likelihood score
by using a permutation test. Details will be discussed in Section 3.3.

4. Due to insufficient data there are many regulatory programs which fit the
data equally or nearly equally well. Thus reporting one regulatory program
may not be very informative. We report the direction of effectiveness for each
regulator which is the consensus among the optimal regulatory programs. We
also evaluate the p-value of each reported direction of effectiveness. Details
will be discussed in Section 3.3.

Step 2 has to be elaborated. Each regulatory program induces a different set
of regulated genes. Because the log likelihood score in equation 12 grows with
the number of regulated genes, the regulatory program with the largest set of
regulated genes will always be chosen if we maximize the joint log likelihood
score. To remove the effect of different regulated gene set sizes, we fix the size of
regulated gene sets in the following way. Recall each gene is incorporated in the
model in a greedy fashion, so the first n genes of a regulatory program are the
top n genes which best conform with the regulatory program. We discard the
regulatory programs with small regulated gene sets (< 5 genes) and identify the
minimum size among the remaining regulated gene sets. We then compare the
log likelihood scores of regulatory programs on the fixed-sized regulated gene
sets. This procedure is a tentative solution to alleviate the effect of gene set size
on the log likelihood score. In the long run a more principled way of normalizing
equation 12 in terms of regulated gene set size is needed.

3.3 Evaluating the significance of regulatory models

We have used three significant measures (p-values) in the algorithm procedures.
The first p-value evaluates the significance of adding a new gene in the regu-
lated gene set. This p-value is calculated by comparing the increment of the
log likelihood score generated from empirical data to the increment from ran-
dom expression data. We consider a randomization scenario that P (xge|cge =
0), P (xge|cge = ±1) of the newly added gene are uniformly sampled from the
simplex P (xge|cge = 0) + P (xge|cge = −1) + P (xge|cge = +1) = 1. Rather than
random samplings, the p-value under this scenario can be analytically approx-
imated. Details about the approximation are described in the Supplementary
Webpage.

The second p-value evaluates the significance of a specific regulatory model.
It is calculated from the following permutation test procedure. The expression
data of regulated genes are randomly permuted (over genes and experiments).
The optimal regulatory program and its log likelihood score from each permuted



data are calculated, and the p-value is the fraction of optimal log likelihood scores
from random data that exceed the empirical score. Details about the procedure
are reported in the Supplementary Webpage.

The third p-value calculates the significance of the combinatorial property
of a regulator. It is calculated according to the gap of log likelihood scores
between the best model where this property holds and the best model where
this property does not hold. For example, to evaluate the significance of “r1 is a
necessary activator”, we find the optimal model M1 among the models where r1

is a necessary activator and the optimal model M0 among the models where r1

is not a necessary activator. We compare the empirical gap score with the gap
scores obtained by randomly permuting gene expression data. Notice the gap
score of each permuted data is obtained by re-optimizing the regulatory models
to fit the permuted data. The p-value is the fraction of the random gap scores
exceeding the empirical gap. Details about the procedure also can be seen in the
Supplementary Webpage.

4 Empirical analysis

We applied the algorithm of identifying regulatory models to the protein-DNA
interaction data of 106 transcription factors [11] and two sets of large-scale gene
expression data: Rosetta Compendium data of gene knock-outs [13] and stress
response gene expression data published by Gasch et al. [14]. Rosetta data con-
tains the log ratios and p-values of steady-state measurements, whereas Gasch
data provides log ratios of time-course measurements. For simplicity we fix the
regulatory functions (activators or repressors) of single regulators according to
previous studies.

The conditional probabilities P ({xrg}|{brg}) of binding data and P ({xre}|{cre})
and P ({xge}|{cge}) of Rosetta gene expression data were evaluated using the ap-
proximation described in [12]. The conditional probabilities P ({xre}|{cre}) and
P ({xge}|{cge}) of the Gasch data were evaluated from Gaussian and exponential
distributions of the time-course responses of perturbations. Details are described
in the Appendix.

We summarize and analyze the inferred models in the following aspects. We
first visualize the regulatory models inferred from two expression datasets and
discuss their inferred combinatorial properties. We then validate the inferred
models with gene function ontology, literature survey, and sensitivity analysis.

4.1 Models inferred from Rosetta and Gasch data

Figure 1 summarizes the information about regulatory models inferred from
Rosetta and Gasch data. We only consider the regulatory models with up to
three regulators. We represent a regulatory model as a bi-partite graph between
regulators (circles) and a regulated gene set (a square). The color of a regulator
indicates its regulatory function as an activator (red) or a repressor (green). The
color of a regulated gene set indicates the MIPS functional categories enriched



Fig. 1. Models inferred from Rosetta (left) and Gasch (right) data
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in the regulated gene set (p ≤ 0.06 according to hyper-geometric test with Bon-
ferroni correction). The color of an edge indicates the direction of effectiveness
of a regulator in a model: red for necessary, green for sufficient, and black for
neither. Two edges can exist between two nodes since a regulator can be both
necessary and sufficient. The width of an edge indicates the confidence about
about necessity or sufficiency as described in Section 4. We use the visualization
software Cytoscape (www.cytoscape.org) to draw the graphs.

We found the combinatorial properties of many inferred regulatory models
are consistent with the knowledge about the combinatorial interactions of these
transcription factors. We summarize these interactions into three categories and
draw a number of illustrative examples for each category.

– Each regulator is necessary for a regulated gene set. This pattern appears in
regulator pairs such as (Ino2,Ino4), (Swi4,Swi6), (Swi6,Mbp1), (Fkh1,Fkh2)
in Rosetta models. These regulator pairs are known to be components of
protein complexes for transcriptional activation. Ino2-Ino4 complex regulates
genes involved in phospholipid synthesis ([15]). Protein complexes Swi6-Swi4,
Swi6-Mbp1 and Fkh1-Fkh2 activate genes expressed during G1/S, S/G2 or
G2/M phases of yeast cell cycle ([16]).

– Each regulator is sufficient for a regulated gene set. This pattern is com-
mon for stress response regulators, for example, (Msn4,Yap1), (Msn2,Yap1),
(Msn2,Hsf1) pairs in Rosetta data and (Msn4,Hsf1), (Msn4,Yap1) in Gasch
data. This pattern is consistent with the property that each stress response



regulator either activates the gene under a slightly different stress condition
(for example, Hsf1 for heat shock and Yap1 for hyperoxia) or contributes in
an additive or redundant fashion (for example, Msn2 and Msn4) ([14]).

– Some regulators are both necessary and sufficient, and the others are not
strongly effective in either direction. Examples in Rosetta models include
several small modules co-regulated by Gcn4 and one of the following regula-
tors involved in amino acid synthesis: Leu3, Cbf1, Abf1, and several ribosome
gene sets regulated by Rap1, Fhl1 and several other factors in Gasch mod-
els. In these examples, there exist some “master regulators” which control
genes in both directions, while other regulators are not correlated with reg-
ulated genes at expression levels. This property does not necessarily exclude
the functional role of these “inactive” regulators. They may be possible co-
factors which regulate transcription via other mechanisms.

Since our regulatory models are based on simplifying assumptions, many
true combinatorial interactions of regulators are not retrieved. It is difficult to
assess the false negatives of the algorithm due to the lack of the complete knowl-
edge about combinatorial gene regulation. Instead, we draw several illustrative
examples from known combinatorial interactions of yeast genes.

– The well-known interaction of Gal4-Gal80 complex on galactose metabolic
genes does not appear in Figure 1. The Rosetta module regulated by Gal4
(m473) is not enriched with galactose metabolic genes, and Gal80 does not
appear in Figure 1. This is because the expression level of Gal4 is low even
under active state [3]. Hence its regulatory function on galactose metabolic
genes cannot be revealed by expression data alone. Although Gal80 expres-
sion level is known to modulate in certain datasets (e.g., [3]), it does not
vary significantly in both Rosetta and Gasch data.

– The combinatorial interaction of Ste12 and Dig1 on pheromone response
genes is only partially retrieved. Dig1 inhibits the phosphorylation of Ste12 [17],
hence the inhibitory function of Dig1 is valid only when Ste12 is present. This
combinatorial function cannot be captured by our models since the effective-
ness of a regulator depends on the state of other regulators.

– Sok2 is known to be both activator and repressor for different genes [18].
We assign it as an repressor since it represses more genes. However, this
assignment also excludes the regulatory models where Sok2 is an activator.

4.2 Validation of inferred models

In addition to the qualitative properties described in Section 4.1, we performed
three quantitative validations on the inferred models. First, we investigated the
enrichment of functional categories in the regulated gene set according to Munich
Information Center for Protein Sequences (MIPS) database (http://mips.gsf.de/)
in the regulated gene sets. Second, we checked from previous works whether reg-
ulators participating in the same model were known to have functional interac-
tions. Third, we demonstrated that the inferred models were robust against the
variation of free parameter values.



For each regulatory model, we evaluated the hyper-geometric p-values of the
enrichment of MIPS categories with Bonferroni correction. We considered the
models with significant log likelihood values (permutation p-value ≤ 0.02 for
Rosetta models and p-value ≤ 0.001 for Gasch models, including the models
of single regulators). Overall, about half of the inferred models are enriched
with at least one MIPS category (p ≤ 0.06): 46% of the Rosetta models (51
out of 110) and 45% of the Gasch models (65 out of 144) are enriched. Due
to the incompleteness of the MIPS database and the conservative estimation
of Bonferroni correction, more inferred models are expected to be involved in
specific cellular processes.

We also searched PubMed and Incyte Yeast Proteome Databases (http://www.incyte.com/login.html)
to check whether regulators participating in the same model were known to
jointly control one or multiple genes. More than two thirds of the regulator sets
in the significant models were verified in previous works: 60% of the significant
Rosetta models with multiple regulators (46 out of 77) and 67% of the significant
Gasch models with multiple regulators (46 out of 69) contain regulators whose
interactions were reported in previous works. The complete list of all regulatory
models and their validations are reported in the Supplementary Webpage.

We further demonstrated the inferred models were robust against the vari-
ations of three free parameters: λ appeared in the joint log likelihood function
(equation 12) is the relative weight between expression and binding data, α in
Table 3 relates the the prediction of a regulatory program to the hidden states of
expression changes, pstop in the greedy algorithm specifies the stopping criterion
of the p-values of adding genes (Section 3.2). The default setting of these param-
eters is λ = 0.1, α = 1

3 , pstop = 0.1. We performed robustness tests by varying
each parameter while fixing the other two as the default values. Inferred models
generated from the new parameter settings were compared to the default models
in two aspects. First, we calculated the average overlap rate of regulated gene
sets (with respect to the default models) over all models. Second, we counted the
fraction of new models which had identical inferred directions of effectiveness to
the default models. Figure 2 shows the sensitivity of parameters in Rosetta and
Gasch models. Both sensitivity measures are very robust against each parameter
in each dataset except α on Rosetta data. For example, when varying λ from
0.01 to 0.9, the average overlap rate of Gasch models ranges between 90% and
100% and more than 85% of inferred models agree on directions of effectiveness.
In contrast, models inferred from Rosetta data are sensitive to α: the average
overlap rate drops to 50% when α varies from 1

3 to 0.1.

5 Discussion

We have described a simple computational approach to capture combinatorial
effects of multiple transcription factors in transcription control. We identify reg-
ulatory models – including subsets of regulators and genes together with a reg-
ulatory program – from binding and expression data. We define regulatory pro-
grams with multiple regulators according to two properties of single transcrip-



Fig. 2. Robustness tests on parameters

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1
Rosetta, alpha

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Rosetta, lambda

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Rosetta, addpval

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1
Gasch, alpha

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Gasch, lambda

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Gasch, addpval

label rate
member rate

Top: Rosetta data. Bottom: Gasch data.
Solid line: overlap of combinatorial labels.
Dash line: overlap of regulated gene sets.

tion factors: 1) the function of a regulator and 2) its direction of effectiveness.
The inferred models agree substantially with known functions and interactions.
Moreover, the inferred models are robust against specific parameter values.

There are, however, many unresolved issues. Most combinatorial functions
cannot be reduced to the properties of individual regulators. For example, the
direction of effectiveness of a regulator may depend on the state of other regula-
tors. The assumptions in our model are simplistic. For example, some regulators
are not modulated through mRNA (protein) levels but primarily by altering
protein modification states [19]. Binding and expression data alone are unlikely
to capture such regulatory effects. A transcription factor can be both activator
and repressor, depending on the co-factors it interacts with and the sets of reg-
ulated genes. Finally, some of the inferred models do not correspond to known
biological functions and may be false positives. Better error models are needed
to weed out a greater fraction of false positives.

Appendix: quantization of time-course expression data

In the Appendix we will show a method of evaluating the conditional proba-
bilities P (xre|cre) and P (xge|cge) from time-course gene expression data. In the
stress response dataset, xre and xge are time-course measurements of expression
responses under a stress condition. The goal is to convert xre into conditional
probabilities P (xre|cre = +1), P (xre|cre = −1), P (xre|cre = 0).

Denote y ∈ {−1, 0, +1} as the actual, quantized expression change of a gene
under one experimental condition, and x(t1), · · · , x(tn) are its n time-course
measurements. We relate the discrete state y to measurements x(t1), · · · , x(tn)



with a two-level process. The discrete state y generates a continuous time-course
expression profile m(t1), · · · , m(tn); and x(t1), · · · , x(tn) are noisy measurements
of m(t1), · · · , m(tn). We model measurement errors x(t1) − m(t1), · · · , x(tn) −
m(tn) as iid Gaussian random variables with zero mean and variance σ2.

The actual expression profile m(t1), · · · , m(tn) is a zero vector given y = 0.
Thus P (x(t1), · · · , x(tn)|y = 0) is the product of normal densities:

P (x(t1), · · · , x(tn)|y = 0) =
(

1
2πσ2

)n
2 n∏

i=1

e−
x(ti)

2

2σ2 . (13)

We model the prior probabilities P (m(t1), · · · , m(tn)|y = ±1) with an iid expo-
nential distribution:

P (m(t1), · · · , m(tn)|y = +1) =
∏n

ti=1 P (m(ti)|y = +1).

P (m(ti)|y = +1) =
{

γe−γm(ti) if m(ti) ≥ 0,
0 otherwise.

(14)

P (m(t1), · · · , m(tn)|y = +1) assigns a non-zero probability to each non-negative
expression profile, and penalizes the expression profiles deviating from 0. P (m(t1), · · · , m(tn)|y = −1)
is defined analogously. By marginalizing over m(ti), the conditional probability
P (x(t1), · · · , x(tn)|y = +1) becomes

P (x(t1), · · · , x(tn)|y = +1) =
∏n

i=1

∫ ∞
0 P (m(ti)|y = +1)P (x(ti)|m(ti))dm(ti)

=
∏n

i=1 γe(−γx(ti)+ 1
2 γ2σ2)(1 − Φ(−(x(ti)−γσ2)

σ )).
(15)

where Φ(.) is the standard normal cumulative distribution function. Similarly,

P (x(t1), · · · , x(tn)|y = −1) =
∏n

i=1

∫ 0
−∞ P (m(ti)|y = −1)P (x(ti)|m(ti))dm(ti)

=
∏n

i=1 γe(γx(ti)+ 1
2 γ2σ2)(Φ(−(x(ti)+γσ2)

σ )).
(16)

σ and γ are free parameters. In the empirical analysis we set σ = γ = 0.5 for
they are close to the variance of the entire Gasch data.

Supplementary Webpage

Details about the calculations of p-values and inferred regulatory models can be
found in the Supplementary Webpage http://www.csail.mit.edu/˜tommi/suppl/recomb05/.
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