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Validation and refinement of gene-regulatory pathways on a network of physical interactions<p>A new automated procedure for prioritizing genetic perturbations was used to evaluate 38 candidate regulatory networks in yeast. Fur-ther analysis of four high-priority gene knockout experiments provided new insights into two regulatory pathways</p>

Abstract

As genome-scale measurements lead to increasingly complex models of gene regulation, systematic
approaches are needed to validate and refine these models. Towards this goal, we describe an
automated procedure for prioritizing genetic perturbations in order to discriminate optimally
between alternative models of a gene-regulatory network. Using this procedure, we evaluate 38
candidate regulatory networks in yeast and perform four high-priority gene knockout experiments.
The refined networks support previously unknown regulatory mechanisms downstream of SOK2
and SWI4.

Background
Recent advances in genomics and computational biology are
enabling construction of large-scale models of gene-regula-
tory networks. High-throughput technologies such as auto-
mated sequencing [1], gene-expression arrays [2], chromatin
immunoprecipitation [3], and yeast two-hybrid assays [4],
each probe different aspects of the gene-regulatory system
through genome-wide datasets. These data have spawned a
variety of methods to infer the structure of gene-regulatory
networks or to study their high-level properties, as recently
reviewed [5].

Regulatory network models generated thus far in Escherichia
coli and budding yeast (Saccharomyces cerevisiae) have
been most often validated against functional databases or
previous literature [6,7]. In contrast, only a few studies have

attempted to validate or refine models systematically [8-11].
However, if we are to accurately model large gene networks in
complex organisms, including fly, worm, mouse, and human,
automated procedures will be essential for analyzing the net-
work, choosing the best new experiments to test the model,
conducting the experiments, and integrating the resulting
data.

The problem of choosing the best experiments to estimate a
model, termed 'experimental design' or 'active learning', has
been a significant area of research in statistics and machine
learning [12-14]. Automating the experimental design proc-
ess can greatly accelerate data collection and model building,
leading to substantial savings in time, materials, and human
effort. For these reasons, many industries such as electronic
circuit fabrication and airplane manufacturing incorporate
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experimental design as an integral step in the design process
[15,16]. A promising application of experimental design for
biological systems was presented by King et al. [17], who inte-
grated computational modeling and experimental design to
reconstruct a small, well studied metabolic pathway. Whether
automated experimental design can be useful in a large and
poorly characterized biological system with noisy data
remains an open question.

We recently reported a procedure for inferring gene-regula-
tory network models by integrating gene-expression profiles
with high-throughput measurements of protein interactions
[18]. Here we extend this procedure to incorporate automated
design of new experiments. First, we use the previously
described modeling procedure to generate a library of models
corresponding to different gene-regulatory systems in yeast.
Many of these models contain transcriptional interactions for
which the regulatory effects (inducer versus repressor) are
ambiguous and cannot be determined from publicly available
expression profiles. Next, to address these ambiguities we
implement a score function that ranks possible genetic per-
turbation experiments on the basis of their projected infor-
mation content over the models. We perform four of the
highest-ranking perturbations experimentally and integrate
the data back into the model. The new data support two out of
three novel regulatory pathways predicted to mediate expres-
sion changes downstream of the yeast transcriptional regula-
tor SWI4.

Results
Summary of physical regulatory models
We applied a previously described network-modeling proce-
dure [18] to integrate three complementary sources of gene-
regulatory information in yeast: 5,558 promoter-binding
interactions for 106 transcription factors measured using
chromatin immunoprecipitation followed by microarray chip
hybridization (ChIP-chip) [3]; the set of all 15,116 pairwise
protein-protein interactions recorded in the Database of
Interacting Proteins as of April 2004 [19]; and a panel of
mRNA expression profiles for 273 individual gene-deletion
experiments [20]. Software for performing the network-mod-
eling procedure is available as a plug-in to the Cytoscape
package [21,22] on our supplementary website [23].

For each gene-deletion experiment, the modeling procedure
identified the most probable paths of protein-protein and
promoter-binding interactions that connect the deleted gene
(the perturbation) to genes that were differentially expressed
in response to the deletion (the effects of perturbation). Thus,
a path represented one possible physical explanation by
which a deleted gene regulates a second gene downstream.
From the expression data, each interaction on a path was
annotated with its probable direction of information flow and
its probable regulatory effect as an inducer or repressor.

For example, the model in Figure 1a (top center) includes a
path from GLN3 through GCN4 to a block of downstream
affected genes. This model integrates evidence that: Gln3p
binds the promoter of GCN4 with high significance in a ChIP-
chip assay [3] (p ≤ 8 × 10-4); Gcn4p binds the promoters of
many genes in the ChIP-chip assay (RIB5, YJL200C, and oth-
ers in the downstream block); and a significant number of
genes in the block are upregulated in a gln3∆ knockout but
downregulated in a gcn4∆  knockout [20]. Together, this evi-
dence confirms Gcn4p as an activator of downstream genes
[24] and leads to a (novel) annotation that Gln3p is likely to
regulate GCN4 via transcriptional repression.

In total, the modeling process generated 4,836 paths, each
explaining expression changes for a particular gene in one or
more knockout experiments. Of the 965 interactions covered
by paths, 194 had regulatory effects that were uniquely deter-
mined by the data, while regulatory effects of the remaining
771 interactions were ambiguous. For example, Figure 1b
includes ambiguous interaction paths through SWI4, SOK2,
and MSN4, explaining the observation that many genes for
which the promoters are bound by Msn4p are upregulated in
a swi4∆  knockout. This observation can be explained by sev-
eral alternative annotations: one scenario is that SWI4 acti-
vates SOK2 and SOK2 represses MSN4 (Figure 1b), whereas
another is that SWI4 represses SOK2 and SOK2 activates
MSN4 (Figure 1c). These regulatory annotations could be
uniquely determined by measuring the expression changes of
genes downstream of MSN4 in the model in response to a
sok2∆  deletion and an msn4∆  deletion (see below).

Paths with ambiguous interactions were partitioned into 37
independent network models (numbered 1-37), where each
model contained a distinct region of the physical network (see
Materials and methods and Additional data file 1). The
remaining non-ambiguous paths were grouped into a single
model (Model 0). As shown in Table 1, 21 of the models (55%)
contained pathways that are well documented in the litera-
ture or are significantly enriched for genes belonging to spe-
cific Munich Information Center for Protein Sequences
(MIPS) [25] functional categories. Of 132 protein-DNA inter-
actions incorporated into Model 0, we found that 50 had been
confirmed in classical (low-throughput) assays as reported in
the Proteome BioKnowledge Library [26]. Moreover, the
inferred regulatory roles (induction or repression) for 48 out
of 50 of these interactions agreed with their experimentally
determined roles (96%, binomial p-value < 1.22 × 10-7). Wir-
ing diagrams for Models 0 and 1 are given in Figure 1; dia-
grams for all other regulatory network models are provided in
Additional data file 1 and at [23].

Experiment selection
As shown in Figure 2, we implemented an information-theo-
retic approach to discriminate between ambiguous model
annotations using the fewest additional gene-expression
experiments. All non-lethal single-gene knockout
Genome Biology 2005, 6:R62



http://genomebiology.com/2005/6/7/R62 Genome Biology 2005,     Volume 6, Issue 7, Article R62       Yeang et al. R62.3

co
m

m
ent

review
s

repo
rts

refereed research
depo

sited research
interactio

ns
info

rm
atio

n

experiments were ranked by their projected information con-
tent based on the inferred models (see Materials and meth-
ods). Table 2 reports the list of top-ranking experiments. This
list coincides roughly with biological intuition, in the sense
that informative target genes typically encode proteins that
are network 'hubs', each having a large number of regulatory
interactions with downstream genes in the models. However,

as discussed later, knocking out hubs only is not as effective
as using the information-theoretic criteria.

Among the highest-priority experiments, Model 1 (Figure 1b)
was the most often targeted, containing three of the top 10
highest-scoring genetic perturbations: sok2∆, yap6∆, and
msn4∆. A fourth perturbation to Model 1, hap4∆, was also

Wiring diagrams for example network modelsFigure 1
Wiring diagrams for example network models. (a) Model 0, showing regulatory pathways that have unique functional annotations. (b,c) Model 1, showing 
regulatory pathways downstream of SWI4 and SOK2 with ambiguous functional annotations (several would be consistent with the observed expression 
responses: two possibilities are shown in (b) and (c), respectively). In the models, a connection from gene a to b represents the experimental observation 
that the proteins encoded by a and b physically interact in a protein-protein interaction (dotted links), or that the protein encoded by a binds the 
promoter of b (solid links). Each gene is either defined by an original knockout (red nodes), a differentially expressed effect (yellow nodes), or a signal 
transducer that was chosen for follow-up perturbation (gray nodes). Functional annotations (edge colors) are uniquely determined in (a) whereas multiple 
annotations are possible in (b) and (c) based on the available data. Diagram layout is performed automatically using the Cytoscape package [21].
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highly ranked (rank 34). Therefore, Model 1 was chosen for
further experimentation.

Model validation
Knockout strains corresponding to the high-ranking pertur-
bations sok2∆, yap6∆, hap4∆, and msn4∆  were grown in
quadruplicate under conditions identical to those for the ini-
tial 273 knockouts by Hughes et al. [20]. Gene-expression
profiles were obtained for each knockout culture versus wild
type using yeast genome microarrays. We sought to test the
three regulatory cascades leading from SWI4 to SOK2 to
either MSN4, HAP4, or YAP6 (Figure 1b). To verify these cas-
cades independently of the model, we analyzed the expression
patterns of gene sets known to be directly regulated by MSN4,
HAP4, or YAP6 (obtained from the Proteome BioKnowledge
Library [26]; see Additional data file 1). To normalize
between our microarray procedures and those of Hughes et
al., we also repeated the original swi4∆  expression profile,
and filtered the above sets to select only those genes with
expression changes that were reproducible (that is, same
direction of change) between the Hughes et al. swi4∆  profile
and our new profile. Expression changes were reproducible

for 28 of 42 Msn4p-regulated genes, 11 of 29 Hap4p-regu-
lated genes, and 64 of 119 Yap6p-regulated genes. Expression
similarity among the genes in each filtered set was captured
formally in a measure called 'coherence'; details of the com-
putation of expression coherence and the selection of the gene
sets are described further in Materials and methods and [23].

As shown in Figure 3a, the gene set downstream of MSN4
showed coherent upregulation in the swi4∆  (p ≤ 10-4) and
sok2∆  (p ≤ 10-4) knockouts, but downregulation in the msn4∆
(p ≤ 8 × 10-4) knockout. This result supports the existence of
a regulatory cascade leading from SWI4 to SOK2 to MSN4.
Furthermore, in the context of the present regulatory cascade,
MSN4 appears to be an inducer as its downstream gene set
was downregulated in the msn4∆  experiment. In contrast,
SOK2 appears to be a repressor of MSN4 as a sok2∆  deletion
experiment upregulates the same set of genes. Finally, SWI4
appears to be an inducer of SOK2 as the swi4∆  knockout has
the same effect as sok2∆  (that is, upregulation).

Results were qualitatively similar for the HAP4 pathway (Fig-
ure 3b). The gene set downstream of HAP4 was upregulated

Table 1

Internal validation for 21 of the 38 inferred models

Model Number of genes Number of variants Validated literature pathway Enriched MIPS functions

0 130 1 Kss1/Fus3-Ste12 (mating response and filamentous 
growth)

Cell fate (1.48 × 10-7); metabolism (0.0067)

1 69 8 Sok2-Msn4 (PKA pathway)

2 63 16 Tup1-Hhf1 (histone regulation) Protein synthesis (7.13 × 10-8)

3 44 2 Tup1/Ssn6-Nrg1 (glucose metabolism) Transport (1.05 x 10.5); metabolism (5.41 × 10-4)

4 58 8 Tup1/Ssn6-α2/Mcm1 (mating response) Cell fate (1.12 × 10-5);

5 58 4 Rpd3-Abf1 (histone modification)

6 44 2 Swi4-Ndd1-Ace2 (cell cycle)

7 26 4 Cell cycle (0.035)

8 36 8 Slt2-Rlm1/Swi4 (PKC pathway)

10 45 16 Med2-Gal4/Gcn4 (general transcription)

15 13 4 Cmd1-Cna1-Skn7 (calcium signaling)

19 9 4 Cell defense (6.33 × 10-6)

23 17 2 Metabolism (1.49 × 10-6);energy (0.04)

26 8 8 Cell defense (9.62 × 10-5)

29 9 4 Yap1-Cad1 (metal response)

30 12 4 Med2-Srb6-Gal4 (general transcription)

32 12 4 Med2-Gal11-Gal4 (general transcription)

33 12 4 Med2-Srb5-Gal4 (general transcription)

34 9 4 Ste12-Mcm1 (mating response) Cell fate (4.55 × 10-8); homeostasis (0.0012); cell 
communication (0.0345)

36 7 4 Metabolism (0.0258)

40 5 2 Metabolism (0.0017)

The number of genes and variants are shown for each model along with the results of our preliminary validations. Each variant corresponds to a 
distinct set of functional annotations on the interactions in the model (directions and regulatory effects, see text). For Model 0, the expression data 
implied a unique set of annotations; for all other models multiple sets of annotations were possible. Each model was validated if its pathways were 
(wholly or partially) cited in previous studies or its downstream genes were significantly enriched for MIPS functional categories (p ≤ 0.05; 
hypergeometric test with Bonferroni correction).
Genome Biology 2005, 6:R62
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in the swi4∆  (p ≤ 10-2) and sok2∆  (p ≤ 9 × 10-4) knockouts but
downregulated in hap4∆  (p ≤ 10-4). These results suggest that
swi4∆, sok2∆, and hap4∆  deletions affect the set of genes
immediately downstream of HAP4, supporting the SWI4-
SOK2-HAP4 regulatory pathway hypothesis. In contrast to
the MSN4 and HAP4 pathways, the gene set downstream of
YAP6 had insignificant responses to all follow-up knockout
experiments (Figure 3c). Thus, the existence of the SWI4-
SOK2-YAP6 regulatory pathway was not supported by our
validation experiments.

Automated model refinement
We used our modeling procedure to construct a new physical
network model using the original 273 knockout gene-expres-
sion experiments of Hughes et al. combined with the new

sok2∆, hap4∆, msn4∆, and yap6∆  profiles. Overall, 60 pro-
tein-DNA interactions were disambiguated by our data: 50
interactions were resolved as definite inducers or repressors,
whereas ten interactions were removed from the model
because the expression of downstream genes did not change
as a result of the knockout. In the updated Model 1, MSN4
and HAP4 were unambiguously annotated as inducers of
downstream genes, SOK2 was annotated as a repressor of
MSN4 and HAP4, and SWI4 was annotated as an inducer of
SOK2 (Figure 3e). These results agree with our previous man-
ually derived annotations (see 'Model validation' above).

Learning-curve analysis
We quantified the efficiency of our information-based
approach by comparing it to two other methods of prioritizing

Schematic of the experimental design approachFigure 2
Schematic of the experimental design approach. The input to the approach is a set of alternative representations of a gene-regulatory model, each of which 
is equally likely given current expression data. In the present work, the alternatives arise as a result of ambiguities in the regulatory roles of interactions in 
the model as inducers or repressors of downstream genes. Next, a scoring procedure is used to rank candidate perturbations according to their expected 
information gain over the model alternatives. High-ranking perturbations are applied to the system and characterized using gene-expression microarrays. 
The resulting expression profiles validate or invalidate particular connections in the model and reduce the set of model alternatives to those that are 
consistent with both old and new expression measurements.
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Figure 3 (see legend on next page)
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gene knockout experiments: prioritizing hubs and prioritiz-
ing genes randomly. First, we generated a 'reference' model
by fixing each ambiguous interaction in Models 1-37 to be an
inducer or repressor. Assignments were chosen arbitrarily
from the set of annotations that were consistent with the orig-
inal knockout data. Next, we used each method (information,
hub, or random) to iteratively 'learn' these assignments. In
each iteration, we selected the highest-priority knockout
experiment, simulated the resulting expression changes (up/
down) using the reference model, updated the inferred
model, and recorded the number of ambiguous interactions
that were resolved. This iterative learning procedure was
repeated 100 times.

As shown in Figure 4, the mutual information criterion signif-
icantly outperformed hub-based and random selection. The
learning curves also provide an estimate of the number of
additional experiments needed to reduce model ambiguity
below a given level. For example, using the information-
based score, ten knockout experiments are needed to reduce
the number of ambiguous interactions by 50%. In contrast,
over 25 experiments are needed according to the hub-based
method. Figure 4 suggests that performing 40 additional
experiments selected using the information-based score will
clarify the regulatory roles of about 70% of the ambiguous
interactions. The learning rate of the final 30% becomes very
slow because these interactions are isolated in the physical

network, unconnected to others, and thus require separate
knockouts to decipher each of them.

Discussion
We have used global expression profiles to validate models of
transcriptional regulation inferred from protein-protein
interactions, genome-wide location analysis, and expression
data. A previously described network inference algorithm
[18] identifies probable paths of physical interactions con-
necting a gene knockout to genes that are differentially
expressed as a result of that knockout. The proposed valida-
tion strategy uses information gain as a criterion for choosing
optimal knockouts to profile using microarray experiments.
This strategy agrees with intuition, in that optimal knockouts
typically target intermediate genes along the pathways under
consideration. If an intermediate gene knockout fails to affect
downstream genes in a pathway, that pathway is removed
from the model.

The validated pathways point to a combination of previously
documented and novel findings. First, in agreement with pre-
vious literature, we confirm that MSN4 and HAP4 are induc-
ers [27,28] and that SOK2 is a repressor [29]. For instance,
SOK2 is known to act downstream of protein kinase A (PKA)
to repress genes involved in stress response, glycogen storage,
and pseudohyphal growth [29]. However, although SOK2 is

Validation and refinement of Swi4 transcriptional cascadesFigure 3 (see previous page)
Validation and refinement of Swi4 transcriptional cascades. Yeast genome microarrays were used to explore three transcriptional cascades from Model 1 
involving the transcriptional regulators Swi4p, Sok2p, and either (a) Msn4p, (b) Hap4p, or (c) Yap6p. Bar charts show the expression coherence of genes 
regulated by Msn4p, Hap4p, or Yap6p in knockout strains swi4∆, sok2∆, msn4∆, hap4∆, and yap6∆. Coherence scores more extreme than ± 0.7 are 
significant (p < 0.01, dotted lines). (d) Results are also shown for genes bound by Msn1p as representative of an unrelated model not targeted by these 
perturbations. This analysis provides validation for the Msn4 and Hap4 pathways and disambiguates the role of each pathway interaction as activating (Swi4 
interactions) or repressing (Sok2 interactions) downstream genes (e). The Yap6 pathway hypothesis is not supported by this analysis.

Table 2

Top-ranking knock-out experiments proposed for model discrimination

Gene Function Score Downstream genes Rank Model

HHF1 Histone 52.1429 74 1 2

SOK2* Regulator for meiosis and PKA pathway 45.0279 64 2 1

CKA1 Protein kinase of cell cycle 45.0075 64 3 5

A2 Mating response 40.9023 58 4 4

YAP6* Stress response regulator 35.1652 50 5 1, 3

NRG1 Regulator of glucose dependent genes 31.6501 45 6 3

FKH1 Regulator of cell cycle 29.1194 41 7 2

FKH2 Regulator of cell cycle 26.7131 38 8 7

SLT2 Protein kinase of cell wall integrity pathway 23.4727 31 9 8

MSN4* Regulator of stress response 21.8224 31 10 1

HAP4* Regulator of cellular respiration 6.3310 9 34 1

Each proposed target gene is reported, along with its function, mutual information score, rank, and the model(s) it informs. All target genes are non-
lethal in rich media. *Gene knockouts selected in this study.
Genome Biology 2005, 6:R62
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thought to control these pathways via a transcriptional cas-
cade, the components of this cascade have remained unclear.
Here, we provide evidence for a model in which SOK2 acts as
a negative regulator upstream of MSN4 and HAP4. Interest-
ingly, MSN4 has been shown to activate stress-response
genes [28], and HAP4 has been shown to activate genes
involved in energy conservation and oxidative carbohydrate
metabolism [27]. Thus, we have identified a candidate model
for the transcriptional cascade downstream of PKA signaling
that mediates stress response. This model includes two novel
regulatory pathways from SWI4 to SOK2 to MSN4 and from
SWI4 to SOK2 to HAP4. The validation experiments do not
support the third predicted pathway from SWI4 to SOK2 to
YAP6.

In model simulations, choosing new gene knockout experi-
ments with an information-theoretic approach significantly
outperformed both random and hub-based selection. It also
outperformed the observed experimental results: approxi-
mately 280 interactions were disambiguated after four simu-
lated knockouts (Figure 4), whereas only 60 interactions were
resolved due to the four actual knockouts sok2∆, hap4∆,
msn4∆, and yap6∆. This difference in performance stems
from key differences between the simulated and actual sce-
narios. In simulation, the four experiments are performed
independently and iteratively, selecting the absolute highest-
ranking knockout each time. In the actual study, four high-
ranking experiments (but not the highest) are chosen to inter-

rogate and maximally resolve a single pathway model, result-
ing in experiments that are highly co-dependent and
performed simultaneously without intervening rounds of
inference and experimental design. In addition, the simula-
tion assumes that all interactions in the model are correct,
along with one of the initial sets of inducer/repressor annota-
tions. It therefore isolates the process of learning regulatory
role annotations, whereas the actual procedure also serves to
distinguish interactions as true versus false positives. Never-
theless, the simulation provides a useful comparison of exper-
imental design methods relative to each other.

An important limitation of the single-gene knockout
approach is that single perturbations do not identify pathway
intermediates for which loss of function can be compensated
by another gene. Furthermore, our approach may not identify
regulatory pathways in which several transcription factors
independently activate gene expression. Applying knockouts
in combination may prove fruitful in these cases. For
instance, approximately 4,000 double knockouts have been
reported in yeast that lead to synthetic lethality: that is, a
lethal phenotype that is not observed in either of the single
knockouts individually [30]. These interactions suggest regu-
latory relationships which could be incorporated into future
work.

Conclusion
Scientific discovery is an iterative process of building models
to explain experimental observations and validating models
with new experiments [31]. Experimental design is the essen-
tial link between these two aspects. Here we have explored a
framework for modeling transcriptional networks in which
experimental design and validation are central features. This
framework is based on computational analysis and expres-
sion microarrays, both of which are amenable to automation,
suggesting a high-throughput strategy for mapping gene-reg-
ulatory pathways.

Materials and methods
Model building and inference
Physical mechanisms of transcriptional regulation were mod-
eled using an approach described previously [18]. Briefly, we
postulated that the regulatory effects of deleting a gene are
propagated along paths of physical interactions (protein-pro-
tein and protein-DNA). We formalized the properties of these
paths and interactions using a factor graph [32] and found the
most probable set of paths using the max-product algorithm
[32]. The resulting set of paths was partitioned into inde-
pendent network models, also as described previously [18].
The raw data used in the modeling procedure included 5,558
promoter-binding interactions (at p-value < 0.001) for 106
transcription factors [3], the set of all 15,166 pairwise protein-
protein interactions recorded in the Database of Interacting
Proteins as of April 2004 [19], and mRNA expression profiles

Simulated learning curves of three experimental design methodsFigure 4
Simulated learning curves of three experimental design methods. Three 
different methods of selecting experiments are compared: mutual 
information scores (triangles), hub selection (circles), and random 
selection (squares). We performed 100 simulated trials and show the 
average number of ambiguous interactions remaining in the inferred model 
after each simulated knockout experiment. Vertical bars indicate the 
standard deviations for the random selection method. The standard 
deviations for the information and hub selection curves are less than five 
and are not shown for clarity.
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for 273 individual gene deletion experiments [20]. Expres-
sion changes with a p-value < 0.02 were considered
significant.

Experiment scoring
We calculated the expected information gain for each of the
4,756 possible non-lethal single-gene deletion experiments
that were not included in the set of 273 deletions used to gen-
erate our network models. Intuitively, information gain
measures (the logarithm of) the number of ambiguous anno-
tations in the model that are likely to be determined after gen-
erating a yeast-genome expression profile in response to a
particular gene deletion under consideration. Each gene-
deletion experiment predicts a distinct expression profile
given a particular configuration of model annotations. Exper-
iments with high information gain are those for which the
predicted expression profiles are highly variable over the set
of possible annotations. In these cases, only one (or at most a
few) of the predicted profiles will match the true observed
profile, efficiently constraining the space of possible model
annotations.

The information gain discussed above arises from the
expected value of information calculations in statistical deci-
sion theory [12]. Here we describe the score more directly in
terms of reduction of model entropy. The entropy of a set of
ambiguous model annotations is given by:

The expected information gain is the difference between the
entropies before and after a hypothetical experiment:

where Ye denotes the vector of predicted expression changes
for each gene in the model under experiment e. The condi-
tional entropy H(M|Ye) requires us to consider all possible
models and corresponding outcomes resulting from experi-
ment e. Direct enumeration of all values of M and Ye is
impractical; instead, we make several simplifying approxima-
tions as described at [23].

Expression profiling
Expression profiling experiments were based on the wild-
type diploid BY4743 and homozygous gene knockout strains
derived from this parent [33] (Invitrogen), with cultures
grown identically to those of Hughes et al. [20]. Labeled
cDNA from each gene knockout strain was co-hybridized ver-
sus wild type cDNA in quadruplicate two-color microarray
hybridizations. Total RNA was isolated by hot acid phenol
extraction, purified to mRNA (Ambion PolyAPure kits), and
labeled with Cy3 or Cy5 by direct incorporation (Amersham
CyScribe First-Strand cDNA Labeling Kit). DNA microarrays

were spotted from the Yeast Genome Oligo Set v1.1 (Qiagen)
on Corning UltraGAPS slides using an OmniGrid 100 robot
(Genomic Solutions). Lyophilized Cy3- and Cy5-labeled sam-
ples were resuspended in 50 µl buffer (5× SSC, 0.1% SDS, 1×
Denhardt's solution, 25% formamide) and co-hybridized at
42°C beneath a coverslip for 15 h. Arrays were imaged at 10
µm resolution using a ScanArray Lite instrument (Perk-
inElmer). Raw quantitated background intensities were
smoothed using a 7 × 7 median filter, separately for the Cy3
and Cy5 channels, and data were corrected for cyanine-dye
dependent bias using a Qspline normalization [34]. The
VERA/SAM package [34] was used to assign a log-likelihood
statistic λ with each gene, indicating its significance of differ-
ential expression in each experiment. Microarray expression
data are deposited in the ArrayExpress database [35] under
accession numbers A-MEXP-217 (Arrays) and E-MEXP-351
(Experiments).

Expression coherence
The expression coherence of a set of genes measures whether
the expression levels of these genes behave similarly in a par-
ticular experiment. Each gene i in gene-deletion experiment e
has an expression ratio rie (versus wild type) and associated p-
value pie of differential expression. First, we filter out insignif-
icant expression changes with a p-value > 0.5. Then, we use
the inverse Gaussian cumulative distribution function, Φ-1, to
convert each remaining p-value into a z-score [36,37]:

zie = Φ-1 (1 - pie)

Next, we compute a 'signed z-score' by multiplying z by +1 if
the expression level is increasing and by -1 if it is decreasing.
The average signed z-score for a gene subset of size N is com-
puted as:

Gene sets with expression changes that are significant and in
the same direction result in large Z-values. A distribution of Z
values obtained from random gene sets of size N was used to
determine a p-value for each expression coherence score.

Additional data files
Additonal data is available with the online version of this
paper. Additional data file 1 contains Tables S1-S4 and wiring
diagram illustrations for Models 0-44. Table S1 gives the
internal validation for 17 out of 24 restricted network models;
Table S2 lists the correlations between swi4δ and gcn4δ data
and Rosetta and the new experiments; Table S3 gives the
restricted subsets used to evaluate the reproducibility; and
Table S4 gives the gene sets for external validation.
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